Variantenberechnungen im Maschinen- und Anlagenbau

Beispiele

Weitere Informationen: www.vcmaster.de
Welle mit Absatz und Freistich

Abmessungen:
- Durchmesser \(D = 100 \text{ mm} \)
- Durchmesser \(D_1 = 80 \text{ mm} \)
- Durchmesser \(d = 75 \text{ mm} \)
- Innendurchmesser \(d_i = 30 \text{ mm} \)
- Rundungsradius \(r = 4,0 \text{ mm} \)

Werkstoff:
- gewählter Werkstoff \(\text{WS} \) = E360
- Behandlung Werkstoff \(\text{WSB} \) = Baustähle
- Art = 1
- Oberflächenrauheit \(R_z = 5 \text{ µm} \)
- Oberflächenverfestigungsfaktor \(K_v = 1,00 \)

Belastung:
- Normalkraft \(F_m = 0 \text{ kN} \)
- Normalkraft \(F_a = 0 \text{ kN} \)
- Biegemoment \(M_m = 3000 \text{ Nm} \)
- Biegemoment \(M_a = 1000 \text{ Nm} \)
- Torsionsmoment \(T_m = 2000 \text{ Nm} \)
- Torsionsmoment \(T_a = 1200 \text{ Nm} \)

Berechnung:
- \(R_e = 360,00 \text{ N/mm}^2 \)
- \(R_m = 690,00 \text{ N/mm}^2 \)
- \(\sigma_{zd} = 275,00 \text{ N/mm}^2 \)
- \(\sigma_0 = 345,00 \text{ N/mm}^2 \)
- \(\tau_1 = 205,00 \text{ N/mm}^2 \)
- Absatztiefe \(t = 0,5 \times (D - d) = 12,50 \text{ mm} \)
Kerbformzahlen:

Rundnut:

Zug $\alpha_{\text{zr}} =
\frac{1}{\sqrt{\left(1 + \frac{1}{1 + 1}\right)\left(0.22 \cdot \frac{r}{t} + 2.74 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2\right)}} = 3.00$

Zug $\alpha_{\text{zr}} =
\frac{1}{\sqrt{\left(0.22 \cdot \frac{r}{t} + 2.74 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2\right)}} = 4.01$

Biegung $\alpha_{\text{bbr}} =
\frac{1}{\sqrt{\left(1 + \frac{1}{1 + 1}\right)\left(0.2 \cdot \frac{r}{t} + 5.5 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2\right)}} = 2.54$

Torsion $\alpha_{\text{ttr}} =
\frac{1}{\sqrt{\left(0.7 \cdot \frac{r}{t} + 20.6 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2\right)}} = 1.80$

Absatz:

Zug $\alpha_{\text{aza}} =
\frac{1}{\sqrt{\left(1 + \frac{1}{1 + 1}\right)\left(0.62 \cdot \frac{r}{t} + 7 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2\right)}} = 2.24$

Biegung $\alpha_{\text{aba}} =
\frac{1}{\sqrt{\left(1 + \frac{1}{1 + 1}\right)\left(0.62 \cdot \frac{r}{t} + 11.6 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2 + 0.2 \cdot \left(\frac{r}{t}\right)^3 \cdot \frac{d}{D}\right)}} = 2.02$

Torsion $\alpha_{\text{ata}} =
\frac{1}{\sqrt{\left(1 + \frac{1}{1 + 1}\right)\left(3.4 \cdot \frac{r}{t} + 38 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)^2 + \left(\frac{r}{t}\right)^2 \cdot \frac{d}{D}\right)}} = 1.52
Maßgebende Kerbformzahlen:

Zug $\alpha_{\alpha z} = (\alpha_{\alpha z r} - \alpha_{\alpha za}) \sqrt{\frac{D_1 - d}{D - d}} + \alpha_{\alpha za} = 3,03$

Biegung $\alpha_{\alpha b} = (\alpha_{\alpha br} - \alpha_{\alpha ba}) \sqrt{\frac{D_1 - d}{D - d}} + \alpha_{\alpha ba} = 2,25$

Zug $\alpha_{\alpha t} = (\alpha_{\alpha tr} - \alpha_{\alpha ta}) \sqrt{\frac{D_1 - d}{D - d}} + \alpha_{\alpha ta} = 1,65$

Hilfsgröße $\varphi = \begin{cases}
\text{Wenn}(d/D > 0,67; \frac{1}{4 + \sqrt{1 + 2}}; 0) & \end{cases} = 0,110$

technologischer Größeneinflußfaktor:

$k_{11} = \begin{cases}
\text{Wenn}(D \geq 300; 0,75; \text{Wenn}(D \geq 32; 1; 1 - 0,26 \times \text{LOG}(D/32))) & \end{cases} = 0,871$

$k_{12} = \begin{cases}
\text{Wenn}(D \geq 300; 0,67; \text{Wenn}(D \leq 32; 1; 1 - 0,26 \times \text{LOG}(D/32))) & \end{cases} = 0,793$

$k_{13} = \begin{cases}
\text{Wenn}(D \geq 300; 0,67; \text{Wenn}(D \leq 32; 1; 1 - 0,26 \times \text{LOG}(D/32))) & \end{cases} = 0,751$

$\kappa_{1} = \begin{cases}
\text{Wenn}(\text{Art}=1; k_{11}; \text{Wenn}(\text{Art}=2; k_{12}; k_{13})) & \end{cases} = 0,871$

geometrischer Größeneinflußfaktor:

$k_{2z} = 1,000$

$k_{2b} = 1 - 0,2 \times (\text{LOG}(\text{MIN}(\text{MAX}(d;8);150) / 7,5) / \text{LOG}(20)) = 0,846$

$k_{2t} = 1 - 0,2 \times (\text{LOG}(\text{MIN}(\text{MAX}(d;8);150) / 7,5) / \text{LOG}(20)) = 0,846$

Einflußfaktor Oberflächenrauheit:

$k_{oz} = 1 - 0,22 \times \text{LOG}(R_z) \times (\text{LOG}(R_m / 20) - 1)$

$k_{ob} = k_{oz}$

$k_{ot} = 0,575 \times k_{oz} + 0,425$

$R_m = R_m \times k_1 = 601 \text{ N/mm}^2$

$R = R_e \times k_1 = 314 \text{ N/mm}^2$

$\tau = \frac{R_e}{\sqrt{3}} \times k_1 = 181 \text{ N/mm}^2$

bezogenes Spannungsgefälle G' für Absatz:

Zug $G'_z = 2,3 \times \frac{1 + \varphi}{r} = 0,638$

Biegung $G'_b = 2,3 \times \frac{1 + \varphi}{r} = 0,638$

Torsion $G'_t = 1,15 / r = 0,287$
Stützzahlen nach DIN743 T2:

Zug \(n_z = 1 + \frac{\sqrt{G'_{z}}}{10 (0,33 + R / 712)} \) = 1.135

Biegung \(n_b = 1 + \frac{\sqrt{G'_{b}}}{10 (0,33 + R / 712)} \) = 1.135

Torsion \(n_t = 1 + \frac{\sqrt{G'_{t}}}{10 (0,33 + \tau / 712)} \) = 1.140

Kerbwirkungszahlen:

Zug-Druck \(\beta_{kz} = \text{WENN}(\alpha_{oz}=1; 1; \alpha_{oz} / n_z) \) = 2.670

Biegung \(\beta_{kb} = \text{WENN}(\alpha_{ob}=1; 1; \alpha_{ob} / n_b) \) = 1.982

Torsion \(\beta_{kt} = \text{WENN}(\alpha_{ot}/n_t<1; 1; \alpha_{ot} / n_t) \) = 1.447

Gesamteinflussfaktoren (ca.-Werte):

Zug-Druck \(K_z = \left(\frac{\beta_{kz} + 1}{k_{oz} - 1} \right)^{1} \) * \(K_v \) = 2.761

Biegung \(K_b = \left(\frac{\beta_{kb} + 1}{k_{ob} - 1} \right)^{1} \) * \(K_v \) = 2.433

Torsion \(K_t = \left(\frac{\beta_{kt} + 1}{k_{ot} - 1} \right)^{1} \) * \(K_v \) = 1.761

Festigkeitsnachweis:

Querschnittswerte:

Querschnittfläche \(A = \frac{\pi}{4} (d^2 - d_i^2) \) = 3711 mm²

Widerstandsmoment \(W_b = \frac{\pi}{32} \left(d^4 - d_i^4 \right) \) / d = 40357 mm³

Widerstandsmoment \(W_t = \frac{\pi}{16} \left(d^4 - d_i^4 \right) \) / d = 80714 mm³
Vom Querschnitt aufzunehmende Spannungen:

Zug-Druck \(\sigma_{zdm} = \frac{F_m \times 10^3}{A} \) = 0,00 N/mm²

Zug-Druck \(\sigma_{zda} = \frac{F_a \times 10^3}{A} \) = 0,00 N/mm²

Biegung \(\sigma_{bm} = \frac{M_m \times 10^3}{W_b} \) = 74 N/mm²

Biegung \(\sigma_{ba} = \frac{M_a \times 10^3}{W_b} \) = 25 N/mm²

Torsion \(\tau_{tm} = \frac{T_m \times 10^3}{W_t} \) = 25 N/mm²

Torsion \(\tau_{ta} = \frac{T_a \times 10^3}{W_t} \) = 15 N/mm²

Vergleichsspannung:

Normalspannungen \(\sigma_{mv} = \sqrt{\left(\sigma_{zdm} + \sigma_{bm}\right)^2 + 3 \times \tau_{tm}^2} \) = 86 N/mm²

Schubspannungen \(\sigma_{mv} = \frac{\sigma_{mv}}{\sqrt{3}} \) = 50 N/mm²

Wechselfestigkeit:

Zug-Druck \(\sigma_{zdw} = \frac{\sigma_{zd} \times k_1}{K_z} \) = 87 N/mm²

Biegung \(\sigma_{bw} = \frac{\sigma_{b} \times k_1}{K_b} \) = 124 N/mm²

Torsion \(\tau_{iw} = \frac{\tau_1 \times k_1}{K_t} \) = 101 N/mm²
Faktor für Mittelspannungsempfindlichkeit:

Zug-Druck \(\psi_{zd} = \frac{\sigma_{zd} \cdot W}{2 \cdot \sigma_{zd} \cdot R_m \cdot \sigma_{zd}} \) = 0,0008

Biegung \(\psi_{b} = \frac{\sigma_{b} \cdot W}{2 \cdot R_m \cdot \sigma_{b}} \) = 0,1150

Torsion \(\psi_{t} = \frac{\tau_{W} \cdot W}{2 \cdot R_m} \) = 0,0917

Ausschlagfestigkeit:

Zug-Druck \(\sigma_{A} = \sigma_{zd} - \psi_{zd} \cdot \sigma_{mv} \) = 87 N/mm²

Biegung \(\sigma_{bA} = \sigma_{b} - \psi_{b} \cdot \sigma_{mv} \) = 114 N/mm²

Torsion \(\tau_{tA} = \tau_{W} - \psi_{t} \cdot \tau_{mv} \) = 96 N/mm²

Vorhandene Sicherheit gegen Dauerbruch:

\[S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{ba}}{\sigma_{bA}} + \frac{\sigma_{zdA}}{\sigma_{zdA}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tA}}\right)^2}} = 3.71 > 1 \]

statische Stützwirkung:

\(k_{2Fzd} = 1,00 \)

\(k_{2Fb} = \) WENN(\(d_i = 0 ; 1,2 ; 1,1 \)) = 1,10

\(k_{2Ft} = \) WENN(\(d_i = 0 ; 1,2 ; 1 \)) = 1,00

Erhöhungsfaktor der Fließgrenze:

\(\gamma_{F} = 0,1226 \cdot \ln(\alpha_{sg}) + 0,9584 \) = 1,06

\(\gamma_{F} = 1,00 \)

Bauteilfließgrenze:

\(\sigma_{bFzd} = R \) = 314 N/mm²

\(\sigma_{bFk} = \sigma_{bFzd} \) = 314 N/mm²

\(\tau_{tFk} = \frac{R}{\sqrt{3}} \) = 181 N/mm²

Hilfswert \(h_2 = \left(\frac{\sigma_{zd} \cdot \sigma_{zd} + \sigma_{bm} + \sigma_{b}}{\sigma_{bFk}} \right)^2 + \left(\frac{\tau_{im} + \tau_{ia}}{\tau_{Fk}} \right)^2 \) = 0,148

Vorhandene Sicherheit gegen Überschreiten der Fließgrenze:

\[S_F = \sqrt{\frac{1}{h_2}} \] = 2,60 > 1
Achse mit drei Einzellanlen:

System:
- Achslänge \(l = 1000 \text{ mm} \)
- Abstand \(a_1 = 175 \text{ mm} \)
- Abstand \(a_2 = 500 \text{ mm} \)
- Abstand \(a_3 = 850 \text{ mm} \)
- Außendurchmesser \(d_a = 37 \text{ mm} \)
- Innendurchmesser \(d_i = 0 \text{ mm} \)

Belastung:
- Kraft \(F_1 = 2500 \text{ N} \)
- Kraft \(F_2 = 2650 \text{ N} \)
- Kraft \(F_3 = 3200 \text{ N} \)

Material:
- Bez = GEW("Material/183-2":Bez;) = S235
- \(R_e = \text{TAB("Material/183-2": R_e; Bez=Bez) = 235 \text{ N/mm}^2} \)

Berechnung:

Auflagerkräfte:

\[
B = \frac{a_1 \cdot F_1 + a_2 \cdot F_2 + a_3 \cdot F_3}{l} = 4482,50 \text{ N}
\]

\[
A = F_1 + F_2 + F_3 - B = 3867,50 \text{ N}
\]

Querkräfte:

\[
Q_1 = A = 3867,50 \text{ N}
\]

\[
Q_2 = A - F_1 = 1367,50 \text{ N}
\]

\[
Q_3 = Q_2 - F_2 = -1282,50 \text{ N}
\]

\[
Q_4 = Q_3 - F_3 = -4482,50 \text{ N}
\]

Momente:

\[
M_1 = Q_1 \cdot a_1 \cdot 10^{-3} = 676,81 \text{ Nm}
\]

\[
M_2 = M_1 + Q_2 \cdot (a_2 - a_1) \cdot 10^{-3} = 1121,25 \text{ Nm}
\]

\[
M_3 = M_2 + Q_3 \cdot (a_3 - a_2) \cdot 10^{-3} = 672,38 \text{ Nm}
\]

\[
M_{\text{max}} = \text{MAX}(M_1 ; M_2 ; M_3) = 1121,25 \text{ Nm}
\]
Spannungen:

\[W_{xy} = \frac{\pi \cdot \left(d_a^4 - d_i^4 \right)}{32 \cdot \frac{d_a}{d_i}} \]

\[\text{vorh}_\sigma_b = \frac{M_{\text{max}} \cdot 10^3}{W_{xy}} \]

\[\sigma_b = 1.2 \cdot \sigma_e \]

\[\text{vorh}_\sigma_b / \sigma_b = 0.80 < 1 \]
Belastung:
Drehmoment T = 320,00 Nm

Berechnung der Schnittgrößen:

System:
- Eingriffswinkel Rad2 $\alpha_{w2} = 21,90 ^\circ$
- Eingriffswinkel Rad3 $\alpha_{w3} = 21,90 ^\circ$
- Schrägungswinkel Rad2 $\beta_2 = 25,00 ^\circ$
- Schrägungswinkel Rad3 $\beta_3 = 25,00 ^\circ$
- Wälzkreisradius Rad2 $r_{w2} = 179,30$ mm
- Wälzkreisradius Rad3 $r_{w3} = 88,20$ mm
- Rundungsradius der Kerbe $\rho = 0,30$ mm
- Halbzeugdicke $D_H = 65,00$ mm
- zul. Verdrehwinkel $\alpha_{zul} = 1,08 \times 10^{-3}$ rad
- Masse Rad 1 $m_1 = 650,0$ kg
- Masse Rad 2 $m_2 = 180,0$ kg
- Drehzahl $n = 125,0$ 1/min
- Fallbeschleunigung $g = 981$ cm/s²

Abstände:
- $l_A = 55,00$ mm
- $l_M = 120,00$ mm
- $l_B = 65,00$ mm
- $l_{CA} = 60,00$ mm

Abstand C-Nabe:
- $l_{CS} = 20,00$ mm
- Torsionsbeanspruchte Länge $l = 50,00$ mm
Maschinenbaubibliothek

Ordnung: Achsen

Werkstoffe:

- Stahl = GEW(“Wellen/Festigk”;WS;) = S275JR
- Rauhtiefe $R_z = 25,00\ \mu m$
- E-Modul $E = 210000\ N/mm^2$
- Gleitmodul $G = 83000\ N/mm^2$

Berechnung:

Länge $L = I_A + I_M + I_B = 240,00\ mm$

Tangentialkräfte:

- $F_{t_2} = T / \rho_{w_2} \cdot 10^3 = 1784,72\ N$
- $F_{t_3} = T / \rho_{w_3} \cdot 10^3 = 3628,12\ N$

Radialkräfte:

- $F_{r_2} = \tan(\alpha_{w_2}) \cdot F_{t_2} = 717,45\ N$
- $F_{r_3} = \tan(\alpha_{w_3}) \cdot F_{t_3} = 1458,49\ N$

Axialkräfte:

- $F_{a_2} = \tan(\beta_2) \cdot F_{t_2} = 832,23\ N$
- $F_{a_3} = \tan(\beta_3) \cdot F_{t_3} = 1691,82\ N$

Stützkräfte in y-Ebene:

- $F_{Ay} = \frac{F_{r_2} \cdot (I_B + I_M) - F_{a_2} \cdot r_{w_2} \cdot F_{t_3} \cdot I_B}{L} = -1051,33\ N$
- $F_{By} = F_{r_2} \cdot F_{Ay} - F_{t_3} = -1859,34\ N$

Stützkräfte in x-Ebene:

- $F_{Ax} = \frac{F_{t_2} \cdot (I_B + I_M) - F_{a_3} \cdot r_{w_3} \cdot F_{t_3} \cdot I_B}{L} = 358,97\ N$
- $F_{Bx} = F_{t_2} \cdot F_{Ax} - F_{t_3} = -32,74\ N$

Biegemomente in y-Ebene:

- $M_{y_2} = F_{Ay} \cdot I_A = -57823,15\ Nmm$
- $M_{y_2r} = F_{Ay} \cdot I_A + F_{a_2} \cdot r_{w_2} = 91395,69\ Nmm$
- $M_{y_C} = F_{Ay} \cdot (I_A + I_{CA}) - F_{r_2} \cdot I_{CA} + F_{a_2} \cdot r_{w_2} = -14731,11\ Nmm$
- $M_{y_3} = F_{By} \cdot I_B = -120857,10\ Nmm$

Biegemomente in x-Ebene:

- $M_{x_2} = F_{Ax} \cdot I_A = 19743,35\ Nmm$
- $M_{x_2r} = F_{Bx} \cdot I_B = -2128,10\ Nmm$
- $M_{x_3} = M_{x_3r} - F_{a_3} \cdot r_{w_3} = -151346,62\ Nmm$
- $M_{x_C} = F_{Ax} \cdot (I_A + I_{CA}) - F_{t_2} \cdot I_{CA} = -65801,65\ Nmm$

Längskräfte in B und C:

- $F_{IB} = F_{a_3} \cdot F_{a_2} = 859,59\ N$
- $F_{IC} = -F_{a_2} = -832,23\ N$
Torsionsberechnung:

\[\tau_{\text{zul}} = \text{TAB("Wellen/Festigk"; } \tau_1 \text{; WS=Stahl)} = 22,00 \text{ N/mm}^2 \]

\[\sigma_{\text{zul}} = \text{TAB("Wellen/Festigk"; } \sigma_b \text{; WS=Stahl)} = 45,00 \text{ N/mm}^2 \]

Berechnung:

Mindestdurchmesser:

\[d_{\text{min}} = \sqrt[3]{\frac{T \times 10^3}{0,2 \times \tau_{\text{zul}}}} = 41,74 \text{ mm} \]

gewählt \(d = 42,00 \text{ mm} \)

Wellendurchmesser am Nabensitz:

\(D = 45,00 \text{ mm} \)

Biegemoment im Querschnitt 3:

\[M_b = \sqrt{M_{x3l}^2 + M_{y3}^2} = 193680,76 \text{ Nmm} \]

Widerstandsmoment am Nabensitz:

\[W_b = 0,1 \times D^3 = 9112,50 \text{ mm}^3 \]

Biegespannung am Nabensitz:

\[\sigma_b = \frac{M_b}{W_b} = 21,25 \text{ N/mm}^2 \]

Nachweis der Biegespannung:

\[\frac{\sigma_b}{\sigma_{bzul}} = 0,47 < 1 \]

Berechnung der Gestaltfestigkeit:

\[\sigma_{\text{bf}} = \text{TAB("Wellen/Festigk"; } \sigma_{\text{bf}} \text{; WS=Stahl)} = 305,00 \text{ N/mm}^2 \]

\[\sigma_{\text{w}} = \text{TAB("Wellen/Festigk"; } \sigma_w \text{; WS=Stahl)} = 185,00 \text{ N/mm}^2 \]

\[R_m = \text{TAB("Wellen/Festigk"; } R_m \text{; WS=Stahl)} = 410,00 \text{ N/mm}^2 \]

\[R_e = \text{TAB("Wellen/Festigk"; } R_e \text{; WS=Stahl)} = 255,00 \text{ N/mm}^2 \]

Biegemomente:

\[M_{x3l} = F_{Ax} \cdot (l_{CS} + l_A + l_{CA}) - F_{t2} \cdot (l_{CA} + l_{CS}) = -94316,65 \text{ Nmm} \]

\[M_{y3} = F_{Ay} \cdot (l_{CS} + l_A + l_{CA}) - F_{r2} \cdot (l_{CA} + l_{CS}) + F_{a2} \cdot r_{w2} = -50106,71 \text{ Nmm} \]

Biegemoment in der Nabe:

\[M_b = \sqrt{M_{x3l}^2 + M_{y3}^2} = 106800,34 \text{ Nmm} \]

Widerstandsmomente:

\[W_{bn} = 0,1 \times d^3 = 7408,80 \text{ mm}^3 \]

\[W_{bn} = 2 \times W_{bn} = 14817,60 \text{ mm}^3 \]

Querschnitt:

\[S = \pi \times d^2 / 4 = 1385,44 \text{ mm}^2 \]
Biegespannung wechselnd:
\[\sigma_b = \frac{M_b}{W_{bn}} = 14,42 \text{ N/mm}^2 \]

Druckspannung ruhend:
\[\sigma_d = \frac{\text{ABS}(F_{IC})}{S} = 0,60 \text{ N/mm}^2 \]

Torsionsspannung ruhend:
\[\tau_t = \frac{T}{W_{tn}} \times 10^3 = 21,60 \text{ N/mm}^2 \]

Oberspannung:
\[\sigma_o = \sigma_b + \sigma_d = 15,02 \text{ N/mm}^2 \]

Ruhegrad R:
\[\sigma_d / \sigma_o = 0,04 \]

\[t = \frac{(D - d)}{2} = 1,50 \text{ mm} \]

Torsion schwellend \(\alpha_o = 0,6 \times R + 0,7 \) = 0,72

Torsion wechselnd \(\alpha_o = 0,6 \times R + 1 \) = 1,02

Torsion ruhend \(\alpha_o = 0,6 \times R + 0,4 \) = 0,42

Vergleichsoberspannung:
\[\sigma_{vo} = \sqrt{\sigma_o^2 + 3 \times (\alpha_o \times \tau_t)^2} = 21,74 \text{ N/mm}^2 \]

Vergleichsspannungsausschlag:
\[\sigma_{va} = (1 - R) \times \sigma_{vo} = 20,87 \text{ N/mm}^2 \]

Durchmesserverhältnis:
\[\frac{d}{D} = 0,93 \]

Abmessungsverhältnis der Kerbe:
\[\frac{\rho}{t} = 0,200 \]

\[\Rightarrow \alpha_{kb} = 4,00 \]

bezogenes Spannungsgefälle:
\[\chi = \frac{2}{d + 2 / \rho} = 6,71 \text{ 1/mm} \]

dynamische Stützziffer:
\[n_{\chi} = \text{TAB("Beiwerte/DynStütz"; n_{\chi}; R_e \leq R_e; \chi = \chi')} = 1,50 \]

Dickenbeiwert:
\[b_d = \text{TAB("Beiwerte/Halbzbd"; b_d; d=D_H)} = 0,96 \]

Oberflächenbeiwert:
\[b_o = \text{TAB("Beiwerte/Oberbei"; b_o; R_m < R_m; R_z=R_z)} = 0,92 \]

Kerbwirkungszahl bei Biegung:
\[\beta_{kb} = \frac{\alpha_{kb}}{n_{\chi}} = 2,67 \]

Gestalt-Ausschlagsfestigkeit:
\[\sigma_{AG} = b_d \times b_o / \beta_{kb} \times \sigma_W = 61,20 \text{ N/mm}^2 \]
Sicherheit gegen Dauerbruch:

\[S_D = \frac{\sigma_{AG}}{\sigma_{va}} = 2.93 > 1.7 \]

Muß die Sicherheit gegen Fließen berechnet werden:

\[R / 0.5 = 0.08 < 1 \text{ Keine Berechnung notwendig} \]

Verdrehwinkel:
Polares Flächenmoment 2. Grades:

\[I_t = 0.1 \cdot D^4 \cdot 10^{-4} = 41.01 \text{ cm}^4 \]

Verdrehwinkel:

\[\alpha = \frac{T \cdot l \cdot 10^{-1}}{G \cdot I_t} = 0.470 \cdot 10^{-3} \text{ rad} \]

Nachweis:

\[\frac{\alpha}{\alpha_{zul}} = 0.44 < 1 \]

Kritische Drehzahl:

Länge \(l_{A2} = l_A + l_M = 175.0 \text{ mm} \)

K=1 für frei in Lagern umlaufenden Achsen und Wellen.
K=1,3 für beiderseits eingespannte Achsen.
K=0,9 für einseitig fliegende Achsen oder Wellen.
Lagerbeiwort \(K = 1.0 \)

Berechnung:

Gewichtskraft \(F_{G1} = m_1 \cdot 9.81 = 6376.5 \text{ N} \)
Gewichtskraft \(F_{G2} = m_2 \cdot 9.81 = 1765.8 \text{ N} \)

Abstände:

\[l_{B2} = L - l_{A2} = 65.0 \text{ mm} \]
\[l_{B1} = L - l_A = 185.0 \text{ mm} \]

axiales Flächenmoment 2. Grades:

\[I_b = 0.05 \cdot D^4 / 10^4 = 20.5 \text{ cm}^4 \]

Auflagerkräfte:

\[F_{A1} = F_{G1} \cdot \frac{l_{B1}}{L} = 4915.2 \text{ N} \]
\[F_{B1} = F_{G1} - F_{A1} = 1461.3 \text{ N} \]

Durchbiegung an den Lagerstellen A und B:

\[f_{A1} = \frac{F_{A1} \cdot 10^{-3} \cdot (\frac{I_A}{10})^3}{3 \cdot E \cdot I_b} = 0.0633 \cdot 10^{-3} \text{ cm} \]

\[f_{B1} = \frac{F_{B1} \cdot 10^{-3} \cdot (\frac{I_{B1}}{10})^3}{3 \cdot E \cdot I_b} = 0.7164 \cdot 10^{-3} \text{ cm} \]
Neigungswinkel der Tangente:
\[\alpha_1 = \frac{f_{A_1} - f_{B_1}}{L} \times 10 = -0,0272 \times 10^{-3} \text{ rad} \]

Durchbiegung durch die Gewichtskraft:
\[f_{G_1} = f_{A_1} - \alpha_1 \times l_A \times 10^{-1} = 0,213 \times 10^{-3} \text{ cm} \]

Auflagerkräfte:
\[F_{A_2} = \frac{F_{G_2} \times l_{B_2}}{L} = 478,2 \text{ N} \]
\[F_{B_2} = F_{G_2} - F_{A_2} = 1287,6 \text{ N} \]

Durchbiegung an den Lagerstellen A und B:
\[f_{A_2} = \frac{F_{A_2} \times 10^{-3} \times (l_{A_2} / 10)^3}{3 \times E \times l_b} = 0,1984 \times 10^{-3} \text{ cm} \]
\[f_{B_2} = \frac{F_{B_2} \times 10^{-3} \times (l_{B_2} / 10)^3}{3 \times E \times l_b} = 0,0274 \times 10^{-3} \text{ cm} \]

Neigungswinkel der Tangente:
\[\alpha_2 = \frac{f_{A_2} - f_{B_2}}{L} \times 10 = 0,0071 \times 10^{-3} \text{ rad} \]

Durchbiegung durch die Gewichtskraft:
\[f_{G_2} = f_{A_2} - \alpha_2 \times l_{A_2} \times 10^{-1} = 0,074 \times 10^{-3} \text{ cm} \]

Biegekritische Drehzahl durch \(m_1 \):
\[n_{k1} = \frac{K}{2 \times \pi} \sqrt{\frac{g}{f_{G_1}}} = 341,56 \text{ 1/s} \]

Biegekritische Drehzahl durch \(m_2 \):
\[n_{k2} = \frac{K}{2 \times \pi} \sqrt{\frac{g}{f_{G_2}}} = 579,48 \text{ 1/s} \]

Biegekritische Drehzahl der gesamten Welle:
\[n_k = \sqrt{\left(\frac{1}{n_{k1}^2} + \frac{1}{n_{k2}^2} \right)} = 294,25 \text{ 1/s} \]
\[\Rightarrow n_k = n_k \times 60 = 17655,00 \text{ 1/min} \]
\[n_k / n = 141,24 \leftrightarrow 1 !! \]
Festigkeitsnachweis für abgesetzte Welle

Abmessungen:
Durchmesser D = 60 mm
Durchmesser d = 50 mm
Innendurchmesser d_i = 10 mm
Rundungsradius r = 5 mm

Werkstoff:
gewählter Werkstoff
WS = GEW("Material/Werkstoff"; Bez;) = 41Cr4
Oberflächenrauheit Rz = 4 µm
Oberflächenverfestigungsfaktor Kv = 1,00
Behandlung Werkstoff
WS_B = GEW("Material/Abf"; WA;) = nicht vergütet
Art = TAB("Material/Abf"; Wert; WA=WS_B) = 1

Belastung:
Normalkraft F_m = 0 kN
Normalkraft F_a = 0 kN
Biegemoment M_m = 3000 Nm
Biegemoment M_a = 900 Nm
Torsionsmoment T_m = 2200 Nm
Torsionsmoment T_a = 600 Nm

Berechnung:
R_e = TAB("Material/Werkstoff"; R_e; Bez=WS) = 800,00 N/mm²
R_m = TAB("Material/Werkstoff"; R_mN; Bez=WS) = 1000,00 N/mm²
σ_zd = TAB("Material/Werkstoff"; σ_zd; Bez=WS) = 400,00 N/mm²
σ_t = TAB("Material/Werkstoff"; σ_t; Bez=WS) = 500,00 N/mm²
τ = TAB("Material/Werkstoff"; τ; Bez=WS) = 300,00 N/mm²
Absatztiefe t = 0,5 * (D - d) = 5,00 mm
Kerbformzahlen:

Zug \(\alpha_{Az} = 1 + \frac{1}{\sqrt{\left(0,62 \frac{r}{t} + 7 \frac{r}{d} \left(1 + 2 \frac{r}{d}\right)^2\right)}} \) = 1,78

Biegung \(\alpha_{Ab} = 1 + \frac{1}{\sqrt{\left(0,62 \frac{r}{t} + 11,6 \frac{r}{d} \left(1 + 2 \frac{r}{d}\right)^2 + 0,2 \left(\frac{r}{t}\right)^3 \frac{d}{D}\right)}} \) = 1,64

Torsion \(\alpha_{At} = 1 + \frac{1}{\sqrt{\left(3,4 \frac{r}{t} + 38 \frac{r}{d} \left(1 + 2 \frac{r}{d}\right)^2 + \left(\frac{r}{t}\right)^2 \frac{d}{D}\right)}} \) = 1,32

Hilfsgröße \(\varphi = 0,167 \) wenn \(\frac{d}{D} > 0,67; \frac{1}{4 \sqrt{\frac{t}{r}} + 2} \)

Technologischer Größeneinflussfaktor:

\(k_{11} = \text{WENN(} D \geq 300; 0,75; \text{WENN(} D < 32; 1; 1 - 0,26 \text{LOG}\left(D/32\right)) \) = 0,929

\(k_{12} = \text{WENN(} D \geq 300; 0,67; \text{WENN(} D < 16; 1; 1 - 0,41 \text{LOG}\left(D/11\right)) \) = 0,698

\(k_{13} = \text{WENN(} D \geq 300; 0,67; \text{WENN(} D < 32; 1; 1 - 0,26 \text{LOG}\left(D/32\right)) \) = 0,929

Geometrischer Größeneinflussfaktor:

\(k_{2z} = 1,000 \)

\(k_{2b} = 1 - 0,2 \times (\text{LOG}\left(\text{MIN}(\text{MAX}(d;8);150) / 7,5 \right) / \text{LOG}(20)) \) = 0,873

\(k_{2t} = 1 - 0,2 \times (\text{LOG}\left(\text{MIN}(\text{MAX}(d;8);150) / 7,5 \right) / \text{LOG}(20)) \) = 0,873

Einflussfaktor Oberflächenrauheit:

\(k_{oz} = 1-0,22 \text{LOG}(R_z) \times(\text{LOG}(R_m / 20) -1) \) = 0,907

\(k_{ob} = k_{oz} \) = 0,907

\(k_{ot} = 0,575 \times k_{oz} + 0,425 \) = 0,947

Bezogenes Spannungsgefälle \(G' \) für Absatz:

Zug \(G'_Z = 2.3 \times \left(1 + \varphi\right) / r \) = 0,537

Biegung \(G'_b = 2.3 \times \left(1 + \varphi\right) / r \) = 0,537

Torsion \(G'_t = 1,15 / r \) = 0,230

\(R_m = R_m \times k_1 \) = 929 N/mm²

\(R = R_e \times k_1 \) = 743 N/mm²

\(\tau = 1,2 \times R_e / \left(3^{0.5}\right) \times k_1 \) = 515 N/mm²
Stützzahlen nach DIN743 T2:

Zug \(n_z = 1 + \frac{\sqrt{G'_z}}{10^{(0,33 + R / 712)}} \) = 1,031

Biegung \(n_b = 1 + \frac{\sqrt{G'_b}}{10^{(0,33 + R / 712)}} \) = 1,031

Torsion \(n_t = 1 + \frac{\sqrt{G'_t}}{10^{(0,33 + \tau / 712)}} \) = 1,042

Kerbwirkungszahlen:

Zug-Druck \(\beta_{kz} = \) WENN(\(\alpha_{oz}=1; 1; \alpha_{oz} / n_z \)) = 1,726
Biegung \(\beta_{kb} = \) WENN(\(\alpha_{ob}=1; 1; \alpha_{ob} / n_b \)) = 1,591
Torsion \(\beta_{kt} = \) WENN(\(\alpha_{ot}=1; 1; \alpha_{ot} / n_t \)) = 1,267

Gesamteinflussfaktoren (ca.-Werte):

Zug-Druck \(K_z = (\beta_{kz} / k_{2z} + 1 / k_{oz} - 1) * 1 / K_v \) = 1,829
Biegung \(K_b = (\beta_{kb} / k_{2b} + 1 / k_{ob} - 1) * 1 / K_v \) = 1,925
Torsion \(K_t = (\beta_{kt} / k_{2t} + 1 / k_{ot} - 1) * 1 / K_v \) = 1,507

Festigkeitsnachweis:

Querschnittswerte:

Querschnittsfläche \(A = \pi / 4 * (d^2 - d_i^2) \) = 1885 mm²
Widerstandsmoment \(W_b = \pi / 32 * (d^4 - d_i^4) / d \) = 12252 mm³
Widerstandsmoment \(W_t = \pi / 16 * (d^4 - d_i^4) / d \) = 24504 mm³

Vom Querschnitt aufzunehmende Spannungen:

Zug-Druck \(\sigma_{zdm} = (F_m * 10^3) / A \) = 0,00 N/mm²
Zug-Druck \(\sigma_{zda} = (F_a * 10^3) / A \) = 0,00 N/mm²
Biegung \(\sigma_{bm} = M_m * 10^3 / W_b \) = 245 N/mm²
Biegung \(\sigma_{ba} = M_a * 10^3 / W_b \) = 73 N/mm²
Torsion \(\tau_{tm} = T_m * 10^3 / W_t \) = 90 N/mm²
Torsion \(\tau_{ta} = T_a * 10^3 / W_t \) = 24 N/mm²

Vergleichsspannung:

Normalspannungen \(\sigma_{mv} = \sqrt{(\sigma_{zdm} + \sigma_{bm})^2 + 3 * \tau_{tm}^2} \) = 290 N/mm²
Schubspannungen \(\tau_{mv} = \frac{\sigma_{mv}}{\sqrt{3}} \) = 167 N/mm²
Wechselfestigkeit:

Zug-Druck $\sigma_{zdW} = \sigma_{zd} \cdot k_1 / K_z$ = 203 N/mm²
Biegung $\sigma_{bW} = \sigma_{b} \cdot k_1 / K_b$ = 241 N/mm²
Torsion $\tau_{tW} = \tau_t \cdot k_1 / K_t$ = 185 N/mm²

Faktor für Mittelspannungsempfindlichkeit:

Zug-Druck $\psi_{zk} = \frac{\sigma_{zd}}{2 \cdot R_m \cdot \sigma_{zdW}}$ = 0,12
Biegung $\psi_{bk} = \frac{\sigma_{bw}}{2 \cdot R_m \cdot \sigma_{bW}}$ = 0,15
Torsion $\psi_{tk} = \frac{\tau_t}{2 \cdot R_m \cdot \tau_{tW}}$ = 0,11

Ausschlagfestigkeit:

Zug-Druck $\sigma_{zdA} = \sigma_{zdW} - \psi_{zk} \cdot \sigma_{mv}$ = 168 N/mm²
Biegung $\sigma_{bA} = \sigma_{bW} - \psi_{bk} \cdot \sigma_{mv}$ = 198 N/mm²
Torsion $\tau_{tA} = \tau_{tW} - \psi_{tk} \cdot \tau_{mv}$ = 167 N/mm²

Vorhandene Sicherheit gegen Dauerbruch:

$$S_D = \frac{1}{\sqrt{\left(\frac{\sigma_{ba} + \sigma_{zdA}}{\sigma_{bA} \cdot \sigma_{zdA}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tA}}\right)^2}} = 2.53 > 1$$

statische Stützwirkung:

$k_{2Fzd} = 1.00$
$k_{2Fb} = \text{Wenn}(d_i = 0 ; 1.2 ; 1.1) = 1.10$
$k_{2Ft} = \text{Wenn}(d_i = 0 ; 1.2 ; 1) = 1.00$

Erhöhungsfaktor der Fließgrenze:

$\gamma_{F\sigma} = 0.1226 \cdot \ln(\alpha_{ab}) + 0.9584$ = 1.02
$\gamma_{F\tau} = 1.00$

Bauteilfließgrenze:

$\sigma_{bFzd} = k_{2Fzd} \cdot \gamma_{F\sigma} \cdot R$ = 758 N/mm²
$\sigma_{bFk} = k_{2Fb} \cdot \gamma_{F\sigma} \cdot R$ = 834 N/mm²
$\tau_{Fk} = k_{2Ft} \cdot \gamma_{F\tau} \cdot R/\sqrt{3}$ = 429 N/mm²

Hilfswert $h_2 = \left(\frac{\sigma_{zdm}}{\sigma_{bFk}} + \frac{\sigma_{zda}}{\sigma_{bFk}} + \frac{\sigma_{bm}}{\sigma_{bFk}} + \frac{\sigma_{ba}}{\sigma_{bFk}}\right)^2 + \left(\frac{\tau_{tm} + \tau_{ta}}{\tau_{Fk}}\right)^2 = 0.216$

Vorhandene Sicherheit gegen Überschreiten der Fließgrenze:

$S_F = \sqrt{\frac{1}{h_2}} = 2.15 > 1$
Kritische Drehzahl:

System:

Masse Rad 1 \(m_1 = \) 650,0 kg
Masse Rad 2 \(m_2 = \) 180,0 kg
Drehzahl \(n = \) 125,0 1/min
E-Modul \(E = \) 21000,0 kN/cm²
Länge \(L = \) 3460,0 mm
Länge \(l_{A1} = \) 1330,0 mm
Länge \(l_{A2} = \) 2730,0 mm
Wellendurchmesser \(d_m = \) 160,0 mm
Fallbeschleunigung \(g = \) 981 cm/s²

Beiwert \(K = 1,0 \):

K=1 für frei in Lagern umlaufenden Achsen und Wellen.
K=1,3 für beiderseits eingespannte Achsen.
K=0,9 für einseitig fliegende Achsen oder Wellen.

Berechnung:

Gewichtskraft \(F_{G1} = m_1 \cdot 9,81 = 6376,5 \) N
Gewichtskraft \(F_{G2} = m_2 \cdot 9,81 = 1765,8 \) N

Abstände:

\(l_{B2} = L - l_{A2} = 730,0 \) mm
\(l_{B1} = L - l_{A1} = 2130,0 \) mm

axiales Flächenmoment 2. Grades:

\(I_b = 0,05 \cdot d_m^4 \cdot 10^{-4} = 3276,8 \) cm⁴

Auflagerkräfte:

\(F_{A1} = F_{G1} \cdot l_{B1} / L = 3925,4 \) N
\(F_{B1} = F_{G1} - F_{A1} = 2451,1 \) N
Durchbiegung an den Lagerstellen A und B:

\[
f_{A1} = \frac{F_{A1} \cdot 10^{-3} \cdot (l_{A1} / 10)^3}{3 \cdot E \cdot l_b} = 44,7351 \times 10^{-3} \text{ cm}
\]

\[
f_{B1} = \frac{F_{B1} \cdot 10^{-3} \cdot (l_{B1} / 10)^3}{3 \cdot E \cdot l_b} = 114,7385 \times 10^{-3} \text{ cm}
\]

Neigungswinkel der Tangente:

\[
\alpha_1 = \frac{f_{A1} - f_{B1}}{L / 10} = -0,2023 \times 10^{-3} \text{ rad}
\]

Durchbiegung durch die Gewichtskraft:

\[
f_{G1} = f_{A1} - \alpha_1 \cdot l_{A1} / 10 = 71,641 \times 10^{-3} \text{ cm}
\]

Auflagerkräfte:

\[
F_{A2} = F_{G2} \cdot l_{B2} / L = 372,6 \text{ N}
\]

\[
F_{B2} = F_{G2} \cdot F_{A2} = 1393,2 \text{ N}
\]

Durchbiegung an den Lagerstellen A und B:

\[
f_{A2} = \frac{F_{A2} \cdot 10^{-3} \cdot (l_{A2} / 10)^3}{3 \cdot E \cdot l_b} = 36,7232 \times 10^{-3} \text{ cm}
\]

\[
f_{B2} = \frac{F_{B2} \cdot 10^{-3} \cdot (l_{B2} / 10)^3}{3 \cdot E \cdot l_b} = 2,6254 \times 10^{-3} \text{ cm}
\]

Neigungswinkel der Tangente:

\[
\alpha_2 = \frac{f_{A2} - f_{B2}}{L / 10} = 0,0985 \times 10^{-3} \text{ rad}
\]

Durchbiegung durch die Gewichtskraft:

\[
f_{G2} = f_{A2} - \alpha_2 \cdot l_{A2} / 10 = 9,833 \times 10^{-3} \text{ cm}
\]

Biegekritische Drehzahl durch \(m_1 \):

\[
n_{k1} = \frac{K}{2 \cdot \pi} \sqrt{\frac{g}{f_{G1}}} = 18,62 \text{ 1/s}
\]

Biegekritische Drehzahl durch \(m_2 \):

\[
n_{k2} = \frac{K}{2 \cdot \pi} \sqrt{\frac{g}{f_{G2}}} = 50,27 \text{ 1/s}
\]

Biegekritische Drehzahl der gesamten Welle:

\[
n_k = \sqrt{\frac{1}{\left(\frac{1}{n_{k1}^2} + \frac{1}{n_{k2}^2}\right)}} = 17,46 \text{ 1/s}
\]

\[
\Rightarrow \quad n_k = n_k \cdot 60 = 1047,60 \text{ 1/min}
\]

\[
n_k / n = 8,38 <> 1 !!
\]
Ausdehnung unter Temperatureinfluß:

Eingabe:
\[\Delta T = 25 \text{ K} \]
\[E = 210000 \text{ N/mm}^2 \]
\[\alpha_k = 1,10 \times 10^{-5} \text{ 1/K} \]
Länge \(l_1 = 40,00 \text{ mm} \)
Länge \(l_2 = 220,00 \text{ mm} \)
Länge \(l_3 = 113,00 \text{ mm} \)
Länge \(l_4 = 30,00 \text{ mm} \)
Durchmesser \(d_1 = 80,00 \text{ mm} \)
Durchmesser \(d_2 = 142,00 \text{ mm} \)
Durchmesser \(d_3 = 120,00 \text{ mm} \)
Durchmesser \(d_4 = 60,00 \text{ mm} \)

Berechnung:

gesamte Länge \(L = l_1 + l_2 + l_3 + l_4 \) = 403 mm

Längenänderung:
\[\Delta l_1 = \Delta T \cdot \alpha_k \cdot l_1 \cdot 10^3 \quad = 11,000 \mu \text{m} \]
\[\Delta l_2 = \Delta T \cdot \alpha_k \cdot l_2 \cdot 10^3 \quad = 60,500 \mu \text{m} \]
\[\Delta l_3 = \Delta T \cdot \alpha_k \cdot l_3 \cdot 10^3 \quad = 31,075 \mu \text{m} \]
\[\Delta l_4 = \Delta T \cdot \alpha_k \cdot l_4 \cdot 10^3 \quad = 8,250 \mu \text{m} \]

Fläche \(A_1 = d_1^2 \cdot \pi / 4 \) = 5026,54 mm²

Fläche \(A_2 = d_2^2 \cdot \pi / 4 \) = 15836,76 mm²

Fläche \(A_3 = d_3^2 \cdot \pi / 4 \) = 11309,72 mm²

Fläche \(A_4 = d_4^2 \cdot \pi / 4 \) = 2827,43 mm²

\(v_1 = \text{WENN}(d_1 = 0; 0; l_1/d_1^2) = 0,0063 \text{ 1/mm} \)

\(v_2 = \text{WENN}(d_2 = 0; 0; l_2/d_2^2) = 0,0109 \text{ 1/mm} \)

\(v_3 = \text{WENN}(d_3 = 0; 0; l_3/d_3^2) = 0,0078 \text{ 1/mm} \)

\(v_4 = \text{WENN}(d_4 = 0; 0; l_4/d_4^2) = 0,0083 \text{ 1/mm} \)

\(F_1 = \text{WENN}(l_1 = 0; \Delta l_1 \cdot 10^{-3} \cdot E \cdot A_1 / l_1) = 290283 \text{ N} \)

\(F_2 = \text{WENN}(l_2 = 0; \Delta l_2 \cdot 10^{-3} \cdot E \cdot A_2 / l_2) = 914573 \text{ N} \)

\(F_3 = \text{WENN}(l_3 = 0; \Delta l_3 \cdot 10^{-3} \cdot E \cdot A_3 / l_3) = 653136 \text{ N} \)

\(F_4 = \text{WENN}(l_4 = 0; \Delta l_4 \cdot 10^{-3} \cdot E \cdot A_4 / l_4) = 163284 \text{ N} \)

Gesamtlängenänderung:
\[\Delta L = \Delta T \cdot \alpha_k \cdot L \cdot 10^3 \quad = 110,825 \mu \text{m} \]

Theoretische Randkraft:
\[F = \frac{F_1 \cdot v_1 + F_2 \cdot v_2 + F_3 \cdot v_3 + F_4 \cdot v_4}{v_1 + v_2 + v_3 + v_4} = 547968 \text{ N} \]
Welle mit Rundnut

Abmessungen:
- Durchmesser $D = 60$ mm
- Durchmesser $d = 50$ mm
- Innendurchmesser $d_i = 10$ mm
- Rundungsradius $r = 3$ mm

Werkstoff:
- gewählter Werkstoff $WS = GEW("Material/Werkstoff"; Bez;) = 41Cr4$
- Oberflächenrauheit $R_z = 4$ µm
- Oberflächenverfestigungsfaktor $K_v = 1,20$

Behandlung Werkstoff
- $WS_B = GEW("Material/Abf"; WA;) = Baustähle$
- Art = TAB("Material/Abf"; Wert; WA=WSB) = 1

Belastung:
- Normalkraft $F_m = 0$ kN
- Normalkraft $F_a = 0$ kN
- Biegemoment $M_m = 3000$ Nm
- Biegemoment $M_a = 600$ Nm
- Torsionsmoment $T_m = 2200$ Nm
- Torsionsmoment $T_a = 600$ Nm

Berechnung:
- $R_e = TAB("Material/Werkstoff"; R_e; Bez=WS) = 800,00 N/mm²
- $R_m = TAB("Material/Werkstoff"; R_m; Bez=WS) = 1000,00 N/mm²
- $\sigma_{zd} = TAB("Material/Werkstoff"; σ_{zd}; Bez=WS) = 400,00 N/mm²
- $\sigma_b = TAB("Material/Werkstoff"; σ_b; Bez=WS) = 500,00 N/mm²
- $\tau = TAB("Material/Werkstoff"; τ; Bez=WS) = 300,00 N/mm²
- Absatztiefe $t = 0.5 \times (D - d) = 5.00$ mm
Kerbformzahlen:

Zug $\alpha_{az} = 1 + \frac{1}{\sqrt{\left(\frac{0.22 \cdot \frac{r}{t} + 2.74 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)}{t}\right)^2}} = 2.72$

Biegung $\alpha_{ab} = 1 + \frac{1}{\sqrt{\left(\frac{0.2 \cdot \frac{r}{t} + 5.5 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)}{t}\right)^2}} = 2.37$

Torsion $\alpha_{at} = 1 + \frac{1}{\sqrt{\left(\frac{0.7 \cdot \frac{r}{t} + 20.6 \cdot \frac{r}{d} \left(1 + 2 \cdot \frac{r}{d}\right)}{t}\right)^2}} = 1.71$

Hilfsgröße $\varphi = \text{WENN}(d \geq D > 0.67; \frac{1}{4 \cdot \sqrt{t + 2}}; 0) = 0.140$

technologischer Größeneinflußfaktor:

$k_{11} = \text{WENN}(D \geq 300; 0.75; \text{WENN}(D \leq 32; 1; 1 - 0.26 \cdot \text{LOG}(D/32))) = 0.929$

$k_{12} = \text{WENN}(D \geq 300; 0.67; \text{WENN}(D \leq 16; 1; 1 - 0.26 \cdot \text{LOG}(D/16))) = 0.851$

$k_{13} = \text{WENN}(D \geq 300; 0.67; \text{WENN}(D \leq 16; 1; 1 - 0.41 \cdot \text{LOG}(D/11))) = 0.698$

$k_1 = \text{WENN}(\text{Art}=1; k_{11}; \text{WENN}(\text{Art}=2; k_{12}; k_{13})) = 0.929$

geometrischer Größeneinflußfaktor:

$k_{2z} = 1.000$

$k_{2b} = 1 - 0.2 \cdot (\text{LOG}(\text{MIN}(\text{MAX}(d;8);150) / 7.5) / \text{LOG}(20)) = 0.873$

$k_{2t} = 1 - 0.2 \cdot (\text{LOG}(\text{MIN}(\text{MAX}(d;8);150) / 7.5) / \text{LOG}(20)) = 0.873$

$R_m = R_m \cdot k_1 = 929 \text{ N/mm}^2$

$R = R_e \cdot k_1 = 743 \text{ N/mm}^2$

$\tau = \frac{R_e}{\sqrt{3}} \cdot k_1 = 429 \text{ N/mm}^2$

Einflußfaktor Oberflächenrauheit:

$k_{oz} = 1 - 0.22 \cdot \text{LOG}(R_z) \cdot (\text{LOG}(R_m \cdot k_1 / 20) - 1) = 0.916$

$k_{ob} = k_{oz} = 0.916$

$k_{ot} = 0.575 \cdot k_{oz} + 0.425 = 0.952$
bezogenes Spannungsgefälle \(G' \) für Absatz:

Zug \(G'_z = \frac{2 \cdot 1 + \varphi}{r} = 0,760 \)

Biegung \(G'_b = \frac{2 \cdot 1 + \varphi}{r} = 0,760 \)

Torsion \(G'_t = \frac{1}{r} = 0,333 \)

Stützzahlen nach DIN743 T2:

Zug \(n_z = 1 + \frac{\sqrt{G'_z}}{10\left(0,33 + \frac{R}{712}\right)} = 1,037 \)

Biegung \(n_b = 1 + \frac{\sqrt{G'_b}}{10\left(0,33 + \frac{R}{712}\right)} = 1,037 \)

Torsion \(n_t = 1 + \frac{\sqrt{G'_t}}{10\left(0,33 + \frac{\tau}{712}\right)} = 1,067 \)

Kerbwirkungszahlen:

Zug-Druck \(\beta_{kz} = \text{WENN}(s_{oz} = 1; \alpha_{oz} / n_z) = 2,623 \)

Biegung \(\beta_{kb} = \text{WENN}(s_{ob} = 1; \alpha_{ob} / n_b) = 2,285 \)

Torsion \(\beta_{kt} = \text{WENN}(\alpha_{ot} < 1; \alpha_{ot} / n_t) = 1,603 \)

Gesamteinflussfaktoren (ca.-Werte):

Zug-Druck \(K_z = \left(\frac{\beta_{kz}}{k_{2z}} + \frac{1}{k_{oz}} \cdot 1\right) \cdot \frac{1}{K_v} = 2,262 \)

Biegung \(K_b = \left(\frac{\beta_{kb}}{k_{2b}} + \frac{1}{k_{ob}} \cdot 1\right) \cdot \frac{1}{K_v} = 2,258 \)

Torsion \(K_t = \left(\frac{\beta_{kt}}{k_{2t}} + \frac{1}{k_{ot}} \cdot 1\right) \cdot \frac{1}{K_v} = 1,572 \)
Festigkeitsnachweis:

Querschnittswerte:

- Querschnittfläche: $A = \frac{\pi}{4}(d^2 - d_i^2) = 1885 \text{ mm}^2$

- Widerstandsmoment: $W_b = \frac{\pi}{32}\left(\frac{d^4 - d_i^4}{d}\right) = 12252 \text{ mm}^3$

- Widerstandsmoment: $W_t = \frac{\pi}{16}\left(\frac{d^4 - d_i^4}{d}\right) = 24504 \text{ mm}^3$

Vom Querschnitt aufzunehmende Spannungen:

- Zug-Druck: $\sigma_{zd} = \frac{F_m \cdot 10^3}{A} = 0,00 \text{ N/mm}^2$

- Zug-Druck: $\sigma_{zd} = \frac{F_a \cdot 10^3}{A} = 0,00 \text{ N/mm}^2$

- Biegung: $\sigma_{bm} = \frac{M_m \cdot 10^3}{W_b} = 245 \text{ N/mm}^2$

- Biegung: $\sigma_{ba} = \frac{M_a \cdot 10^3}{W_b} = 49 \text{ N/mm}^2$

- Torsion: $\tau_{tm} = \frac{T_m \cdot 10^3}{W_t} = 90 \text{ N/mm}^2$

- Torsion: $\tau_{ta} = \frac{T_a \cdot 10^3}{W_t} = 24 \text{ N/mm}^2$

Vergleichsspannung:

- Normalspannungen: $\sigma_{mv} = \sqrt{(\sigma_{zd} + \sigma_{bm})^2 + 3 \cdot \tau_{tm}^2} = 290 \text{ N/mm}^2$

- Schubspannungen: $\tau_{mv} = \frac{\sigma_{mv}}{\sqrt{3}} = 167 \text{ N/mm}^2$

Wechselfestigkeit:

Zug-Druck $\sigma_{zdW} = \frac{\sigma_{zd} \cdot k_1}{K_2} = 164 \text{ N/mm}^2$

Biegung $\sigma_{bW} = \frac{\sigma_{b} \cdot k_1}{K_b} = 206 \text{ N/mm}^2$

Torsion $\tau_{tW} = \frac{\tau_{t} \cdot k_1}{K_t} = 177 \text{ N/mm}^2$

Faktor für Mittelspannungsempfindlichkeit:

Zug-Druck $\psi_{zd} = \frac{\sigma_{zdW}}{2 \cdot R_m \cdot \sigma_{zdW}} = 0,0968$

Biegung $\psi_{bk} = \frac{\sigma_{bW}}{2 \cdot R_m \cdot \sigma_{bW}} = 0,1247$

Torsion $\psi_{tk} = \frac{\tau_{tW}}{2 \cdot \tau_{tW} \cdot R_m \cdot \tau_{tW}} = 0,0005$

Ausschlagfestigkeit:

Zug-Druck $\sigma_{zda} = \sigma_{zdW} - \psi_{zd} \cdot \sigma_{mv} = 136 \text{ N/mm}^2$

Biegung $\sigma_{ba} = \sigma_{bW} - \psi_{bk} \cdot \sigma_{mv} = 170 \text{ N/mm}^2$

Torsion $\tau_{ta} = \tau_{tW} - \psi_{tk} \cdot \tau_{mv} = 177 \text{ N/mm}^2$

Vorhandene Sicherheit gegen Dauerbruch:

$$S_D = \sqrt{\frac{1}{\left(\frac{\sigma_{ba}}{\sigma_{bA}} + \frac{\sigma_{zda}}{\sigma_{zdA}}\right)^2 + \left(\frac{\tau_{ta}}{\tau_{tA}}\right)^2}} = 3,14 > 1$$

\[\text{statistische Stützwirkung:}\]

- $k_{2Fzd} = 1,00$
- $k_{2Fb} = \text{WENN}(d_i = 0 ; 1,2 ; 1,1) = 1,10$
- $k_{2Fl} = \text{WENN}(d_i = 0 ; 1,2 ; 1) = 1,00$

\[\text{Erhöhungsfaktor der Fließgrenze:}\]

- $\gamma_f = 0,1226 \cdot \ln(\alpha_{gb}) + 0,9584 = 1,06$
- $\gamma_F = 1,00$
- $R = 743 \text{ N/mm}^2$
Bauteilfließgrenze:

\[\sigma_{bFzd} = \frac{R}{\sigma_{bFzd}} = 743 \text{ N/mm}^2 \]
\[\sigma_{bFk} = \sigma_{bFzd} = 743 \text{ N/mm}^2 \]
\[\tau_{Fk} = \frac{R}{\sqrt{3}} = 429 \text{ N/mm}^2 \]

Hilfswert \(h_2 = \left(\frac{\sigma_{zdm} + \sigma_{zda} + \sigma_{bm} + \sigma_{ba}}{\sigma_{bFk}} \right)^2 + \left(\frac{\tau_{tm} + \tau_{ta}}{\tau_{Fk}} \right)^2 = 0,227 \)

Vorhandene Sicherheit gegen Überschreiten der Fließgrenze:

\[S_F = \sqrt{\frac{1}{h_2}} = 2,10 > 1 \]
Welle mit Einzellast:

Belastung:
- Kraft $F = 45,50 \text{ kN}$

Abmessungen:
- Gesamtlänge $L = 600,00 \text{ mm}$
- Abstand der Last $L_F = 420,00 \text{ mm}$
- Schnitt 1 bei $l_1 = 50,00 \text{ mm}$
- Schnitt 2 bei $l_2 = 180,00 \text{ mm}$
- Schnitt 3 bei $l_3 = 290,00 \text{ mm}$
- Durchmesser $d_1 = 70,00 \text{ mm}$
- Durchmesser $d_2 = 125,00 \text{ mm}$
- Durchmesser $d_3 = 100,00 \text{ mm}$

Ermittlung der Stützkräfte und Biegemomente:

- $F_A = F \cdot \frac{L_F}{L} = 31,85 \text{ kN}$
- $F_B = F - F_A = 13,65 \text{ kN}$
- $M_{b1} = F_A \cdot l_1 = 1592,50 \text{ Nm}$
- $M_{b2} = F_A \cdot l_2 = 5733,00 \text{ Nm}$
- $M_{b3} = F_B \cdot l_3 = 3958,50 \text{ Nm}$
Spannungen im Schnitt 1, 2 und 3: (Schnitt 4 ist nicht maßgebend)

\[
I_1 = \left(\frac{d_1}{2}\right)^4 \frac{\pi}{4} = 1178587,12 \text{ mm}^4
\]

\[
I_2 = \left(\frac{d_2}{2}\right)^4 \frac{\pi}{4} = 11984214,78 \text{ mm}^4
\]

\[
I_3 = \left(\frac{d_3}{2}\right)^4 \frac{\pi}{4} = 4908734,38 \text{ mm}^4
\]

\[
\sigma_{b1} = \frac{M_{b1}}{I_1} \cdot \frac{d_1}{2} \cdot 10^3 = 47,29 \text{ N/mm}^2
\]

\[
\sigma_{b2} = \frac{M_{b2}}{I_2} \cdot \frac{d_2}{2} \cdot 10^3 = 29,90 \text{ N/mm}^2
\]

\[
\sigma_{b3} = \frac{M_{b3}}{I_3} \cdot \frac{d_3}{2} \cdot 10^3 = 40,32 \text{ N/mm}^2
\]
Blattfeder

System:
- Breite $b = 10,00 \text{ mm}$
- Breite $b' = 6,00 \text{ mm}$
- Blattdicke $h = 0,60 \text{ mm}$
- Federweg $s_h = 12,00 \text{ mm}$
- Blattlänge $L = 80,00 \text{ mm}$

Blatttyp = GEW("Feder/Abf";FF;) = Trapez
Typ T = TAB("Feder/Abf";Wert ;FF=Blatttyp) = 3

Werkstoff:
- Zugfestigkeit $R_m = 2200,00 \text{ N/mm}^2$
- E-Modul $E = 206000 \text{ N/mm}^2$

Belastung:
- Min.Kraft $F_1 = 3,00 \text{ N}$
- Max.Kraft $F_2 = 5,00 \text{ N}$

Berechnung:
- Faktor $q_1 = \text{WENN}(T=1; 4; \text{WENN}(T=2; 6; 4 \cdot \frac{3}{2 \cdot b' / b})) = 10,00$
- Faktor $q_2 = \text{WENN}(T=1; 2/3; \text{WENN}(T=2; \frac{2}{3} \cdot \frac{3}{2 + b' / b})) = 0,77$
- Federrate $R_{soll} = \frac{(F_2 - F_1)}{s_h} = 0,17$
- Federweg $s_{2soll} = \frac{F_2}{R_{soll}} = 29,41 \text{ mm}$
- Federweg $s_{1soll} = \frac{F_1}{R_{soll}} = 17,65 \text{ mm}$
- Federweg $s_1 = \frac{q_1 \cdot L^3 \cdot F_1}{b \cdot h^3 \cdot E} = 34,52 \text{ mm}$

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Federweg \(s_2 = \frac{q_1 \cdot L^3 \cdot F_2}{b \cdot h^3 \cdot E} \) = 57,53 mm

Federrate \(R_{big} = \frac{F_2 - F_1}{s_2 - s_1} \) = 0,09

Zulässige Biegespannung:
\[\sigma_{bzul} = 0,7 \cdot R_m \] = 1540,00 N/mm²

Maximal zulässige Blattdicke:
\[h' = \frac{q_2 \cdot L^2 \cdot \sigma_{bzul}}{s_2soll \cdot E} \] = 1,25 mm

Nachweis der Blattdicke:
\[\frac{h}{h'} = 0,48 < 1 \]

Widerstandsmoment:
\[W = b \cdot h^3 / 6 \] = 0,60 mm³

Maximale Biegespannung:
\[\sigma_2 = \frac{F_2 \cdot L}{W} \] = 666,67 N/mm²

Nachweis der Biegespannung:
\[\frac{\sigma_2}{\sigma_{bzul}} = 0,43 < 1 \]

Maximaler zulässiger Federweg:
\[s_{max} = \frac{q_2 \cdot L^2 \cdot \sigma_{bzul}}{h \cdot E} \] = 61,40 mm

Nachweis des Federwegs:
\[\frac{s_2}{s_{max}} = 0,94 < 1 \]
Drehfeder

Abmessungen
- Schenkellänge \(H \) = 45,0 mm
- Innendurchmesser \(D_i \) = 20,0 mm
- Windungsabstand \(a \) = 1,0 mm
- Federkraft \(F_{\text{max}} \) = 550 N
- max. Drehwinkel \(\varphi_{\text{max}} \) = 120 \(^\circ \)
- Elastizitätsmodul \(E \) = 206000 N/mm\(^2\)
- zul. Spannung \(\sigma_{b,zul} \) = 950 N/mm\(^2\)

Berechnung

Überschlägliche Ermittlung des Durchmessers:
\[
M = F_{\max} \times H = 24750,0 \text{ Nmm}
\]
\[
k = 0,06 \times M^{1/3} / D_i = 0,09
\]
\[
d = 0,23 \times \frac{3 \sqrt{F_{\max} \times H}}{1 \times k} = 7,4 \text{ mm}
\]

gewählt \(d = 7,0 \text{ mm} \)

\[
D = D_i + d = 27,0 \text{ mm}
\]

gewählt \(D = 28,0 \text{ mm} \)

Festigkeitsnachweis
\[
w = D / d = 4,00
\]
\[
q = 1,25
\]
\[
\sigma_q = \frac{M \times q}{\left(\frac{\pi}{32} \times d^3\right)} = 918,74 \text{ N/mm}^2 < 950 \text{ N/mm}^2
\]
Funktionsverhalten

erf. Windungen \(n = \frac{\varphi_{\text{max}} \times E \times d^4}{3667 \times M \times D} \) = 23,4

gewählt \(n = 23,5 \)

\(L_{K0} = n \times (a+d) + d = 195,00 \text{ mm} \)

\(d = \sqrt[3]{\frac{M \times q}{\pi/32 \times \sigma_{b,zul}}} = 6,92 \text{ mm} \)

\(l = n \times \sqrt{(\pi \times D)^2 + (a + d)^2} = 2076 \text{ mm} \)

gewählt:

Drehfeder aus Draht nach DIN 2076-B7

Anzahl der Windungen = \(n = 23,5 \)

Länge des Federkörpers = \(L_{K0} = 195 \text{ mm} \)
Drehstabfeder mit statischer Belastung

System:
- Schaftdurchmesser \(d = 26 \text{ mm} \)
- Länge Federschaft \(l_f = 400 \text{ mm} \)
- Belastung gespannt und ruhend

Belastung:
- Torsionsmoment \(T = 2000 \text{ Nm} \)

Materialkennwerte:
- Schubmodul für Stähle nach DIN 17221
 - Schubmodul \(G = 78500 \text{ N/mm}^2 \)
- Die Drehstabfeder ist:
 - DSF = \text{GEW("Feder/Abf";SFA;)} = \text{vorgesetzt}
 - Art = \text{WENN(DSF="vorgesetzt";1;2)} = 1
 - zul. Schubspannung \(\tau_{zul} = \text{WENN(Art=1;700;1020)} = 700 \text{ N/mm}^2 \)
Berechnung:

Federsteifigkeit
\[c_t = \frac{G \cdot \pi \cdot d^4}{32 \cdot l_f} \times 10^{-3} \approx 8804 \text{ Nm/rad} \]

zul. Torsionsmoment
\[T_{zul} = \frac{\tau_{zul} \cdot \pi \cdot d^3}{16} \times 10^{-3} \approx 2416 \text{ Nm} \]

Torsionsspannung
\[\tau = \frac{T \cdot 16}{\pi \cdot d^3} \times 10^3 \approx 579,54 \text{ N/mm}^2 \]

Federdrehwinkel \([\text{Rad}]\)
\[\varphi_{[\text{Rad}]} = \frac{T}{c_t} \approx 0,2272 \text{ rad} \]

Federdrehwinkel \([\text{Grad}]\)
\[\varphi_{[\text{Grad}]} = \frac{180}{\pi} \varphi_{[\text{Rad}]} \approx 13,02 ^\circ \]

Schubspannungsnachweis bei statischer Belastung
\[\frac{\tau}{\tau_{zul}} = 0.83 \leq 1 \]
Drehstabfeder mit dynamischer Belastung

System:
- Schaftdurchmesser \(d = 50 \text{ mm} \)
- Länge Federschaft \(l_f = 1000 \text{ mm} \)

Belastung:
Bei zwei Torsionsmomenten ist \(T_2 \) größer als \(T_1 \) zu wählen.
- Torsionsmoment \(T_1 = 3000 \text{ Nm} \)
- Torsionsmoment \(T_2 = 9000 \text{ Nm} \)

Materialkennwerte:
- Schubmodul für Federstahl nach DIN 17221: \(G = 78500 \text{ N/mm}^2 \)
- \(\tau_{zul} = \text{ GEW(Feder/DSFeder};\text{Art;} = \text{nicht vorgesetzte Stabfedern} \)
- \(\tau_{zul} = \text{ WENN(Art="vorgesetzte Stabfeder";700;1020) = 1020 \text{ N/mm}^2} \)
- bei dynamischer Belastung \(\tau_{zul} = 1020 \text{ N/mm}^2 \)
- Eingabe \(N_{typ} \) (1) bei einer Schwingspielzahl \(N \geq 2 \cdot 10^6 \) und (2) bei \(N = 2 \cdot 10^5 \)
- Schwingspielzahl \(N_{typ} = 2 \)
- Hubfestigkeit \(\tau_F \) bei \(\tau_u = 0 \)
- \(\tau_F = 740 \text{ N/mm}^2 \)
Berechnung:

Schubspannung $\tau_1 = \frac{16 \cdot T_1 \cdot 10^3}{\pi \cdot d^3}$

$\tau_1 = 122,23 \, \text{N/mm}^2$

Schubspannung $\tau_2 = \frac{16 \cdot T_2 \cdot 10^3}{\pi \cdot d^3}$

$\tau_2 = 366,69 \, \text{N/mm}^2$

Hubspannung $\tau_h = \tau_2 - \tau_1$

$\tau_h = 244,46 \, \text{N/mm}^2$

Unterspannung $\tau_u = \tau_1$

$\tau_u = 122,23 \, \text{N/mm}^2$

Hubfestigkeit $\tau_H = \tau_F - 0,3 \cdot \tau_u$

$\tau_H = 703,33 \, \text{N/mm}^2$

polares Flächenmoment 2. Grades

$I_t = \frac{d^4 \cdot \pi}{32}$

$I_t = 613592 \, \text{mm}^4$

Federdrehwinkel $\varphi_{2\text{[rad]}} = \frac{T_2 \cdot I_t \cdot 10^3}{G \cdot I_t}$

$\varphi_{2\text{[rad]}} = 0,1869 \, \text{rad}$

$\varphi_{2\text{[rad]}} \cdot 180/\pi = 10,71 \, ^\circ$

Nachweis:

Hubspannungsnachweis

$\frac{\tau_h}{\tau_H} = 0,35 \leq 1$

Schubspannungsnachweis bei dynamischer Belastung

$\frac{\tau_2}{\tau_{2\text{zul}}} = 0,36 \leq 1$
Gummifedern

Drehschub-Hülsenfeder

Belastung
- Drehmoment $M_t = 50 \text{ Nm}$
- Beanspruchungsart $B = \text{GEW"Feder/GFSp"; B;} = \text{gleichbleibend}$

System
- DSH = Drehschubfedern
- Gummifeder Typ = DSH
- Außenradius $r_e = 55 \text{ mm}$
- Innenradius $r_i = 25 \text{ mm}$
- Federbreite $b = 30 \text{ mm}$
- Gummihärte in $\text{ShoreA} = \text{GEW"Feder/KFaktor";Shore;} = 40$
- Korrekturfaktor $k = \text{TAB"Feder/KFaktor";k;Shore=ShoreA} = 1,15 ^\circ$
- Schubmodul $G = \text{TAB"Feder/KFaktor";G;Shore=ShoreA} = 0,43$
- Drehschub $\tau_{zul} = \text{TAB"Feder/GFSp"; \tau_{zul,DS};B=B} = 2,0 \text{ N/mm}^2$
- zul. Drehwinkel $\alpha \leq 40 ^\circ$ bei DSH
- $\alpha_{zul} = 40,00 ^\circ$
Berechnung

Schubspannung \(\tau = \frac{M_t \times 10^3}{2 \times r_i^2 \times \pi \times b} = 0.424 \text{ N/mm}^2 \)

Drehwinkel \(\alpha_{[\text{Rad}]} = \frac{M_t \times 10^3}{4 \times \pi \times b \times G \left(\frac{1}{r_i^2} - \frac{1}{r_e^2} \right)} = 0.392 \text{ rad} \)

Drehwinkel \(\alpha_{[\text{Grad}]} = \frac{\alpha_{[\text{Rad}]} \times 180}{\pi} = 22.46^\circ \)

Federsteife \(c_{[\text{Rad}]} = \frac{M_t}{\alpha_{[\text{Rad}]} \times 180^\circ} = 127.55 \text{ Nm/Grad} \)

Federsteife \(c_{[\text{Grad}]} = \frac{c_{[\text{Rad}]} \times \pi}{180^\circ} = 2.23 \text{ Nm/Grad} \)

dynamische Federsteife \(c_{[\text{dynamic}]} = k \times c_{[\text{Grad}]} = 2.56 \text{ Nm/Grad} \)

dynamischer Drehwinkel \(\alpha_{[\text{dynamic}]} = \frac{M_t}{c_{[\text{dynamic}]} \times 180^\circ} = 19.53^\circ \)

Nachweis

Schubspannungsnachweis \(\frac{\tau}{\tau_{zul}} = 0.21 \leq 1 \)

Kontrolle Drehwinkel \(\frac{\alpha_{[\text{Grad}]} \times \alpha_{zul}}{\alpha_{[\text{Grad}]} \times \alpha_{zul}} = 0.56 \leq 1 \)
Rückholfeder:

System:
Draht A
Vorspannkraft \(F_1 = 384 \text{ N} \)
innere Vorspannkraft \(F_0 = 240,00 \text{ N} \)
vorgespannter Federweg \(s_1 = 25 \text{ mm} \)
zusätzlicher Rückholweg \(s = 50 \text{ mm} \)
Federlänge \(L_1 = 250 \text{ mm} \)
Außendurchmesser \(D_e = 45 \text{ mm} \)

Material:
Schubmodul \(G = 81500 \text{ N/mm}^2 \)

Berechnung:
maximale Federkraft \(F_2' = \frac{F_1}{s_1} \cdot (s_1 + s) = 1152 \text{ N} \)
Feder wird mit innerer Vorspannkraft hergestellt, dadurch verringert sich der die größte Federkraft auf schätzungsweise:
\(F_2' = 800,00 \text{ N} \)

für Drahtsorte A-D bei \(d \geq 5 \text{ mm} \) \(k_1 = 0,16 \)
\(d = k_1 \cdot 3 \sqrt{\frac{F_2' \cdot D_e}{D}} = 5,28 \text{ mm} \)
gewählt \(d = 6,00 \text{ mm} \)
\(D = D_e - d = 39,00 \text{ mm} \)
gewählt nach Vorzugszahl DIN 323 \(D = 40,00 \text{ mm} \)
und damit wird \(D_e = D + d = 46,00 \text{ mm} \)

Schubspannung \(\tau_2 = \frac{F_2' \cdot D}{0,4 \cdot d^3} = 370,37 \text{ N/mm}^2 \)
Federrate \(R = \frac{F_1 - F_0}{s_1} = 5,76 \text{ N/mm} \)
Windungszahl \(n = \frac{G \cdot d^4 \cdot s_1}{8 \cdot D^3 \cdot (F_1 - F_0)} = 35,82 \)
gewählt \(n = 36,00 \)

damit wird die innere Vorspannkraft zu:

\[
F_0 = \frac{F_1 \cdot G \cdot d^4 \cdot s_1}{8 \cdot D^3 \cdot n} = 240,74 \text{ N}
\]

Vorspannkraft zulässig:

\[
w = \frac{D}{d} = 6,67
\]

\[
\alpha = 0,3 - 0,0139 \cdot w = 0,21
\]

Mindestzugfestigkeit \(R_m \) für Drahtsorte SL

\[
R_m = 1720 - 660 \cdot \log(d) = 1206,42 \text{ N/mm}^2
\]

\[
\tau_{zul} = 0,45 \cdot R_m = 542,89 \text{ N/mm}^2
\]

\[
\tau_{0,zul} = \alpha \cdot \tau_{zul} = 114,01 \text{ N/mm}^2
\]

\[
zul.F_0 = \tau_{0,zul} \cdot 0,4 \cdot d^3 / D = 246,26 \text{ N}
\]

\[
\frac{F_0}{zul.F_0} = 0,98 < 1
\]

Abmessungen der Feder:

Länge des unbelasteten Federkörpers:

\[
zulässige Maßabweichung A_a = 0,060 \text{ mm}
\]

\[
d_{max} = d + A_a = 6,060 \text{ mm}
\]

\[
L_K = (n + 1) \cdot d_{max} = 224,22 \text{ mm}
\]

\[
D_i = D_e - 2d = 34,00 \text{ mm}
\]

\[
L_H = D_i \cdot 0,8 = 27,20 \text{ mm}
\]

\[
L_0 = L_K + 2 \cdot L_H = 278,62 \text{ mm}
\]

endgültige Rückholkraft:

\[
F_2 = \frac{F_0 + G \cdot d^4 \cdot s_{1+s}}{8 \cdot D^3 \cdot n} = 670,5 \text{ N}
\]
schwingend belastete Schraubendruckfeder

Belastung:
\[F_1 = 430,00 \, \text{N} \]
\[F_2 = 620,00 \, \text{N} \]

Systemwerte:
- Schwingender Hub \(\Delta s = 11,00 \, \text{mm} \)
- Äußerer Windungsdurchmesser \(D_e = 28,00 \, \text{mm} \)

Unterscheidung der Fertigungsverfahren in kaltgeformten Druckfedern und warmgeformten Druckfedern

<table>
<thead>
<tr>
<th>FV</th>
<th>GEW(“Feder/Abf”;FR;)</th>
<th>warmgeformt</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_1)</td>
<td>TAB(“Feder/Abf”;(f_1);FR=FV)</td>
<td>2</td>
</tr>
</tbody>
</table>

Federende

<table>
<thead>
<tr>
<th>FE</th>
<th>GEW(“Feder/Abf”;FE;FR=FV)</th>
<th>angelegt u. plangearbeitet</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_2)</td>
<td>TAB(“Feder/Abf”;(f_2);FE=FEnd)</td>
<td>1</td>
</tr>
</tbody>
</table>

Belastungsart

<table>
<thead>
<tr>
<th>LA</th>
<th>GEW(“Feder/Abf”;BL;)</th>
<th>dynamisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f_3)</td>
<td>TAB(“Feder/Abf”;(f_3);BL=LA)</td>
<td>2</td>
</tr>
</tbody>
</table>

Material:
- Schubmodul \(G = 81500 \, \text{N/mm}^2 \)

Die Berechnung erfolgt auf Dauerhaftigkeit:

\(k_1 = 0,15 \) (für Drahtsorten SL, SM, DM, SH, DH bei \(d < 5 \, \text{mm} \))
\(k_1 = 0,16 \) (für Drahtsorten SL, SM, DM, SH, DH bei \(d = 5...14 \, \text{mm} \))
\(k_1 = 0,17 \) (für Drahtsorten FD, TD, VD bei \(d < 5 \, \text{mm} \))
\(k_1 = 0,18 \) (für Drahtsorten FD, TD, VD bei \(d = 5...14 \, \text{mm} \))

füre Drahtsorte VD bei \(d < 5 \, \text{mm} \) \(k_1 = 0,17 \)

\[d = k_1 \times \text{MAX}(\frac{3}{4} \sqrt{F_1} \times \frac{D_e}{3} \times \sqrt{F_2} \times \frac{D_e}{3}) = 4,40 \, \text{mm} \]

gewählt \(d = 4,50 \, \text{mm} \)

\[D = D_e - d = 23,50 \, \text{mm} \]

gewählt nach Vorzugszahl DIN 323 \(D = 24,00 \, \text{mm} \)

und damit wird \(D_e = D + d = 28,50 \, \text{mm} \)
Schubspannungen:

\[
\tau_1 = \frac{F_1 \cdot D}{0.4 \cdot d^3} = 283,13 \text{ N/mm}^2
\]

\[
\tau_2 = \frac{F_2 \cdot D}{0.4 \cdot d^3} = 408,23 \text{ N/mm}^2
\]

Wickelverhältnis \(w = \frac{D}{d} = 5,33\)

Korrekturfaktor \(k = \frac{w + 0.5}{w - 0.75} = 1,27\)

\[
\tau_{k1} = k \cdot \tau_1 = 359,58 \text{ N/mm}^2
\]

\[
\tau_{k2} = k \cdot \tau_2 = 518,45 \text{ N/mm}^2
\]

Unterspannung \(\tau_{ku} = \tau_{k1} = 359,58 \text{ N/mm}^2\)

⇒ obere Grenzspannung nach DIN 17223 T2:

\[
\tau_{ko} = 670,00 \text{ N/mm}^2
\]

Hubfestigkeit \(\tau_{kh} = \tau_{ko} - \tau_{ku} = 310,42 \text{ N/mm}^2\)

auftretende Hubspannung:

\[
\tau_{kh} = \tau_{k2} - \tau_{k1} = 158,87 \text{ N/mm}^2
\]

Anzahl der federnden Windungen:

\[
R_{soll} = \frac{(F_2 - F_1) \cdot \Delta s}{d^4} = 17,27 \text{ N/mm}
\]

\[
n' = \frac{G \cdot d^4}{8 D^3 \cdot R_{soll}} = 17,50
\]

gewählt \(n = 18,00\)

vorhandene Federrate:

\[
R_{ist} = \frac{G \cdot d^4}{8 D^3 \cdot n} = 16,79 \text{ N/mm}
\]

bei kaltgeformten Druckfedern

Gesamtwindungszahl \(n_{t,1} = n + 2 = 20,00\)

bei warmgeformten Druckfedern

Gesamtwindungszahl \(n_{t,2} = n + 1,5 = 19,50\)

Gesamtwindungszahl

\[
n_t = \text{Wenn}(f_1 = 1; n_{t,1} ; n_{t,2}) = 19,50
\]
Abmessungen des Federkörpers:

Zulässige Abweichung der Maßgenauigkeit $A_a = 0,035 \text{ mm}$

$\delta_{\text{max}} = d + A_a = 4,535 \text{ mm}$

angelegt und unbearbeitet bei kaltgeformten Federenden

Blocklänge $L_{c,1k} = (n_{t,1} + 1,5) \times \delta_{\text{max}} = 97,5 \text{ mm}$

unbearbeitet bei warmgeformten Federenden

Blocklänge $L_{c,1w} = (n_{t,2} + 1,1) \times \delta_{\text{max}} = 93,4 \text{ mm}$

angelegt und geschliffen bei kaltgeformten Federenden

Blocklänge $L_{c,2k} = n_{t,1} \times \delta_{\text{max}} = 90,7 \text{ mm}$

angelegt und planbearbeitet bei warmgeformten Federenden

Blocklänge $L_{c,2w} = (n_{t,2} - 0,3) \times \delta_{\text{max}} = 87,1 \text{ mm}$

endgültige Blocklänge

Blocklänge $L_c = \begin{cases} L_{c,1k} & \text{falls } f_1 = 1 \\ L_{c,2k} & \text{sonst} \end{cases} = 93,4 \text{ mm}$

Summe der Mindestabstände der Windungen für kaltgeformte Federn:

bei statischer Beanspruchung

$S_{a,1} = 0,0015 \times \frac{D^2}{d} + 0,1 \times d \times n = 11,56 \text{ mm}$

bei dynamischer Beanspruchung

$S_{a,1}' = 1,5 \times S_{a,1} = 17,34 \text{ mm}$

Summe der Mindestabstände der Windungen für warmgeformte Federn:

bei statischer Beanspruchung

$S_{a,2} = 0,02 \times \left(D + d \right) \times n = 10,26 \text{ mm}$

bei dynamischer Beanspruchung

$S_{a,2}' = 2 \times S_{a,2} = 20,52 \text{ mm}$

$S_{a,1} = \begin{cases} S_{a,1} & \text{falls } f_1 = 1 \\ S_{a,2} & \text{sonst} \end{cases} = 17,34 \text{ mm}$

$S_{a,2} = \begin{cases} S_{a,2} & \text{falls } f_3 = 1 \\ S_{a,2}' & \text{sonst} \end{cases} = 20,52 \text{ mm}$

endgültige Summe der Mindestabstände der Windungen

$S_a = \begin{cases} S_a & \text{falls } f_1 = 1 \\ S_{a,2} & \text{sonst} \end{cases} = 20,52 \text{ mm}$

$s_2 = \frac{F_2}{R_{st}} = 36,9 \text{ mm}$

Die Länge des unbelasteten Federkörpers wird damit zu:

$L_0 = s_2 + S_a + L_c = 144,5 \text{ mm}$

Die gespannt Länge $L_2 = L_0 - s_2 = 107,6 \text{ mm}$

Blockspannung:

Federweg bis zum Blockzustand $s_c = L_0 - L_c = 57,4 \text{ mm}$

zugehörige Blockkraft $F_c = R_{st} \times s_c = 963,7 \text{ N}$

Blockspannung $\tau_c = \frac{F_c \times D}{0,4 \times d^3} = 634,5 \text{ N/mm}^2$

Mindestzugfestigkeit R_m für die Drahtsorte VDC

$R_m = 1850 - 460 \times \log(d) = 1550 \text{ N/mm}^2$

$\tau_{c,zul} = 0,56 \times R_m = 868 \text{ N/mm}^2$

Nachweis:

$\frac{\tau_c}{\tau_{c,zul}} = 0,73 < 1$

Knick sicherheit:

$s_2 / L_0 = 0,26$

$v = 0,50$
Spiralfeder

System:
Federart = Spiralfeder
Zugfestigkeit $R_m = 1300$ N/mm²
Elastizitätsmodul $E = 206000$ N/mm²
Windungsquerschnitt
$W_Q = \text{GEW("Feder/Abf";Wq;)} = \text{Flachband}$
Typ = $\text{TAB("Feder/Abf";twq;Wq=W_Q)} = 2$
Für Flachband aus warmgewälzten Stählen nach DIN17221 $\sigma_0 = 500$ N/mm² und für Federstahldraht $\sigma_0 = 670$ N/mm² und kugelgestraht $\sigma_0 = 900$ N/mm²

$\sigma_0 = 500$ N/mm²
Radius innen $r_i = 16$ mm
Anzahl der federnden Windungen $n = 10,0$
Dick Flachband bzw. des Drahtes $t = 2,00$ mm
Breite Flachband bzw. des Drahtes $b = 20$ mm
Windungsabstand $a = 2,0$ mm
Radius außen $r_o = r_i + n \cdot (t+a) = 56,0$ mm

gestreckte Länge der Windungen $l = \pi \cdot (r_o + r_i) \cdot n = 2262$ mm

Bei zwei Federwinkeln sollte φ_2 größer als φ_1 gewählt werden.

Federdrehwinkel $\varphi_1[\text{Grad}] = 30,00$ °
Federdrehwinkel $\varphi_1[\text{Rad}] = \frac{\varphi_1[\text{Grad}]}{180} \pi = 0,5236$ rad
Federdrehwinkel $\varphi_2[\text{Grad}] = 270,00$ °
Federdrehwinkel $\varphi_2[\text{Rad}] = \frac{\varphi_2[\text{Grad}]}{180} \pi = 4,7124$ rad

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
axiales Flächenmoment 2. Grades des Windungsquerschnitts

\[
\text{Flächenmoment 2. Grades } I = \ WENN(\text{Typ}=1; \ \pi \times \frac{t^4}{64}; \ b \times \frac{t^3}{12}) = 13,33 \text{ mm}^4
\]

\[
\text{Widerstandsmoment } W_b = \ WENN(\text{Typ}=1; \ \pi \times \frac{t^3}{32}; \ b \times \frac{t^2}{6}) = 13,33 \text{ mm}^3
\]

\[\text{Berechnung}\]

\[
\text{Biegemoment } M_{b1} = \frac{\varphi_1[\text{Rad}] \cdot E \cdot I}{I} = 636 \text{ Nmm}
\]

\[
\text{Biegemoment } M_{b2} = \frac{\varphi_2[\text{Rad}] \cdot E \cdot I}{I} = 5721 \text{ Nmm}
\]

\[
\text{Biegespannung } \sigma_1 = \frac{M_{b1}}{W_b} = 47,7 \text{ N/mm}^2
\]

\[
\text{Biegespannung } \sigma_2 = \frac{M_{b2}}{W_b} = 429,2 \text{ N/mm}^2
\]

\[
\text{Hubspannung } \sigma_h = \sigma_2 - \sigma_1 = 381,5 \text{ N/mm}^2
\]

\[
\text{zul. Hubspannung } \sigma_{hzul} = \sigma_0 - 0,22 \cdot \sigma_1 = 489,5 \text{ N/mm}^2
\]

\[
\text{zul. Oberspannung des Schwingspiels } \sigma_{2zul} = 0,7 \cdot R_m = 910,0 \text{ N/mm}^2
\]

\[\text{Verrichtete Arbeit W zwischen } \varphi_1 \text{ und } \varphi_2\]

\[
W_2 = \frac{M_{b2} \cdot \varphi_2[\text{Rad}]}{2} \cdot 10^{-3} = 13,48 \text{ Nm}
\]

\[
W_1 = \frac{M_{b1} \cdot \varphi_1[\text{Rad}]}{2} \cdot 10^{-3} = 0,17 \text{ Nm}
\]

\[
\text{verrichtete Arbeit } W = W_2 - W_1 = 13,31 \text{ J}
\]

\[\text{Nachweis}\]

\[
\frac{\sigma_h}{\sigma_{hzul}} = 0,78 \leq 1
\]

\[
\frac{\sigma_2}{\sigma_{2zul}} = 0,47 \leq 1
\]
Berechnung von Tellerfedern Einzelteller

Belastung Abmessungen und Material:
Durchmesser des Führungsbolzens \(d = 11,8\) mm
Mindestspiel \(Sp = 0,2\) mm
E-Modul \(E = 206000\) N/mm²
Poissonzahl für Federstahl \(\mu = 0,30\)

Wahl einer Feder:
- Gruppe \(G_T = \text{GEW}("Feder/Tellerfeder";G;) = 2\)
- Tellerfeder Reihe \(R_T = \text{GEW}("Feder/Tellerfeder";R;) = A\)
- \(D_e = \text{GEW}("Feder/Tellerfeder";D_e;D_i \geq (2*Sp + d);R=R_T;G=G_T) = 25,00\) mm
- \(D_i = \text{TAB}("Feder/Tellerfeder";D_i;D_e = D_e;R=R_T;G=G_T) = 12,20\) mm
- \(F_n = \text{TAB}("Feder/Tellerfeder";F_n;D_e=D_e;R=R_T;G=G_T) = 2,910\) kN
- \(t_{1[2]} = \text{TAB}("Feder/Tellerfeder";t;D_e=D_e;R=R_T;G=G_T) = 1,50\) mm
- \(t' = \text{TAB}("Feder/Tellerfeder";t';D_e=D_e;R=R_T;G=G_T) = 0,00\) mm
- \(t = \text{WENN}(G_T = 3 ; t' ; t_{1[2]}) = 1,50\) mm
- \(h_0 = \text{TAB}("Feder/Tellerfeder";h_0;D_e=D_e;R=R_T;G=G_T) = 0,55\) mm
- \(l_0 = t+h_0 = 2,05\) mm
- \(s_n = 0,75*h_0 = 0,412\) mm
Berechnung:

Durchmesserverhältnis
\[\delta = \frac{D_e}{D_i} = 2,05 \]

Hilfswerte Faktoren \(K_1 - K_3 \)

\[K_1 = \frac{1}{\pi} \left(\frac{\delta - 1}{\delta + 1} \right)^2 = 0,7040 \]
\[K_2 = \frac{6}{\pi} \frac{\ln(\delta)}{\ln(\delta)} = 1,2311 \]
\[K_3 = \frac{3}{\pi} \frac{\delta - 1}{\ln(\delta)} = 1,3968 \]

Federkraft
\[F = \frac{4 \cdot E}{1 - \mu^2} \frac{t^4}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right) - \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right) + 1 \] \[= 2922 \text{ N} \]

Federsteifigkeit
\[c = \frac{4 \cdot E}{1 - \mu^2} \frac{t^3}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right)^2 + 1 \] \[= 6567 \text{ N/mm} \]

Federarbeit
\[W = \frac{2 \cdot E}{1 - \mu^2} \frac{t^5}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right)^2 + 1 \] \[= 620 \text{ J} \]

Druckspannung am Punkt I:
\[\sigma_1 = \frac{-4 \cdot E}{1 - \mu^2} \frac{t^2}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right) - K_2 \cdot \frac{h_0}{t} \cdot \frac{s_n}{t} - K_3 \] \[= -2136 \text{ N/mm}^2 \]

Zugspannung am Punkt II:
\[\sigma_{II} = \frac{-4 \cdot E}{1 - \mu^2} \frac{t^2}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right) + K_3 \] \[= 1417 \text{ N/mm}^2 \]

Zugspannung am Punkt III:
\[\sigma_{III} = \frac{-4 \cdot E}{1 - \mu^2} \frac{t^2}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right) - \frac{1}{\delta} \left(K_2 \cdot \frac{h_0}{t} \cdot \frac{s_n}{t} \right) \cdot K_3 \] \[= 1089 \text{ N/mm}^2 \]

Druckspannung am Punkt IV:
\[\sigma_{IV} = \frac{-4 \cdot E}{1 - \mu^2} \frac{t^2}{K_1 \cdot D_e} \frac{s_n}{t} \left(\frac{h_0}{t} \cdot \frac{s_n}{t} \right) + K_3 \] \[= -644 \text{ N/mm}^2 \]
Tellerfedersäule:

Belastung Abmessungen und Material:
- Aufzunehmende Druckkraft $F = 7300 \text{ N}$
- bei einem Federweg von $L_F = 5 \text{ mm}$
- Durchmesser des Führungsbolzens $d = 10,8 \text{ mm}$
- E-Modul $E = 206000 \text{ N/mm}^2$
- Poissonzahl für Federstahl $\mu = 0,30$
- Anzahl der Federn je Paket $n = 3$

Wahl einer Feder:
- Tellerfeder Reihe = A
- Feder = $\text{TAB("Feder/Teller"Reihe; Bez; D_d; F_{0,75}>F/n)} = \text{DIN 2093-A12.2}$
 mit $D_0 = \text{TAB("Feder/Teller"Reihe; D_0; Bez=Feder)} = 25,00 \text{ mm}$
 $D_1 = \text{TAB("Feder/Teller"Reihe; D_1; Bez=Feder)} = 12,20 \text{ mm}$
 $F_{0,75} = \text{TAB("Feder/Teller"Reihe; F_{0,75}; Bez=Feder)} = 2910 \text{ N}$
 $t = \text{TAB("Feder/Teller"Reihe; t; Bez=Feder)} = 1,50 \text{ mm}$
 $h_0 = \text{TAB("Feder/Teller"Reihe; h_0; Bez=Feder)} = 0,55 \text{ mm}$

Berechnung:
- Die geforderte Federkraft wird erreicht, durch des wechselseitige Anordnen der Tellerfedern.
- $F_{\text{ges}} = n \cdot F_{0,75} = 8730 \text{ N}$
- $F / F_{\text{ges}} = 0,84 < 1$

Mit Berücksichtigung der Reibung:
- Faktor zur Mantelreibung $w_M = 0,02$
- Faktor zur Randreibung $w_R = 0,03$
Damit wird die verformungswirksame Kraft auf die Einzelfeder:

\[
F' = \frac{1}{n} \cdot F \cdot \left(1 - w_M \cdot (n - 1) - w_R \right) = 2263,00 \text{ N}
\]

Durchmesserverhältnis \(\delta = \frac{D_e}{D_i} = 2,05 \)

\[
K_1 = \frac{1}{\pi} \cdot \left(\frac{\delta - 1}{\delta + 1} \right)^2 \cdot \frac{2}{\delta - 1} \cdot \ln(\delta) = 0,70
\]

für Federn ohne Auflagerfläche \(K_4 = 1,00 \)

rechnerische Federkraft in Planlage:

\[
F_c = \frac{4 \cdot E \cdot h_0 \cdot t^3}{1 - \mu^2} \cdot K_1 \cdot D_e^2 \cdot K_4 = 3841,88 \text{ N}
\]

\[
F' / F_c = 0,59
\]

bezogener rechnerische Kennlinienverlauf eines Einzeltellers - Diagramm:

⇒ Verhältnis \(v = 0,56 \)

damit wird der Federweg des Einzeltellers:

\[
s = v \cdot h_0 = 0,31 \text{ mm} < s_{0,75}
\]

Anzahl der wechselseitig aneinandergereihten Teller:

\[
i = \frac{L_F}{s} = 16
\]

damit wird die Länge der unbelasteten Federsäule:

\[
L_0 = i \cdot (h_0 + n \cdot t) = 80,80 \text{ mm}
\]

Die Länge der belasteten Federsäule:

\[
L = i \cdot (h_0 + n \cdot t - s) = 75,84 \text{ mm}
\]
Abmessungen Schräg- und bogenverzahntes Kegelradpaar

System:
- Normalmodul an der mittleren Teilkegellänge $m_{nm} = 4$ mm
- Ritzel Zähnezahl $z_1 = 19$
- Rad Zähnezahl $z_2 = 88$
- Eingriffswinkel $\alpha_n = 20^\circ$
- mittlerer Schrägwinkel $\beta_m = 22^\circ$
- Achsenwinkel $\Sigma = 120^\circ$
- Zahnbreite $b = 30$ mm
- Faktor für die Berechnung des Kopfspiels $f_1 = 0,25$

Berechnung:
- mittlere Kopfhöhe $h_{am} = m_{nm} = 4$ mm
- mittleres Kopfspiel $c_m = f_1 \cdot m_{nm} = 1,00$ mm
- mittlere Fußhöhe $h_{fm} = c_m + h_{am} = 5,00$ mm
- Zähnezahlverhältnis $u = z_2 / z_1 = 4,632$
- Teilkegelwinkel Ritzel $\delta_1 = \text{ATAN} (\sin(\Sigma) / (\cos(\Sigma) + u)) = 11,84^\circ$
- Teilkegelwinkel Ritzel $\delta_2 = \Sigma - \delta_1 = 108,16^\circ$
- mittlerer Stirnmodul $m_{tm} = m_{nm} / \cos(\beta_m) = 4,314$ mm
- mittlere Stirnteilung $p_{tm} = m_{nm} / \cos(\beta_m) \cdot \pi = 13,6^\circ$
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formel</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>mittlerer Teilkreisdurchmesser Ritzel</td>
<td>$d_{m1} = \frac{z_1 \cdot m_{nm}}{\cos(\beta_m)}$</td>
<td>82,0 mm</td>
</tr>
<tr>
<td>mittlerer Teilkreisdurchmesser Rad</td>
<td>$d_{m2} = \frac{z_2 \cdot m_{nm}}{\cos(\beta_m)}$</td>
<td>379,6 mm</td>
</tr>
<tr>
<td>mittlerer Kopfkreisdurchmesser Ritzel</td>
<td>$d_{am1} = d_{m1} + 2 \cdot h_{am} \cdot \cos(\delta_1)$</td>
<td>89,8 mm</td>
</tr>
<tr>
<td>mittlerer Kopfkreisdurchmesser Rad</td>
<td>$d_{am2} = d_{m2} + 2 \cdot h_{am} \cdot \cos(\delta_2)$</td>
<td>377,1 mm</td>
</tr>
<tr>
<td>mittlerer Fußkreisdurchmesser Ritzel</td>
<td>$d_{fm1} = d_{m1} - 2 \cdot h_{fm} \cdot \cos(\delta_1)$</td>
<td>72,2 mm</td>
</tr>
<tr>
<td>mittlerer Fußkreisdurchmesser Rad</td>
<td>$d_{fm2} = d_{m2} - 2 \cdot h_{fm} \cdot \cos(\delta_2)$</td>
<td>382,7 mm</td>
</tr>
<tr>
<td>mittlere Teilkegellänge</td>
<td>$R_m = \frac{d_{m1}}{(2 \cdot \sin(\delta_1))}$</td>
<td>199,8 mm</td>
</tr>
<tr>
<td>äußere Teilkegellänge</td>
<td>$R_a = R_m + 0,5 \cdot b$</td>
<td>214,8 mm</td>
</tr>
<tr>
<td>innere Teilkegellänge</td>
<td>$R_l = R_m - 0,5 \cdot b$</td>
<td>184,8 mm</td>
</tr>
<tr>
<td>Teilkreisdurchmesser Ritzel (außen)</td>
<td>$d_{a1} = d_{m1} \cdot R_v/R_m$</td>
<td>88,2 mm</td>
</tr>
<tr>
<td>Teilkreisdurchmesser Rad (außen)</td>
<td>$d_{a2} = d_{m2} \cdot R_v/R_m$</td>
<td>408,10 mm</td>
</tr>
<tr>
<td>äußerer Stirnmodul</td>
<td>$m_{te} = d_{a1} / z_1$</td>
<td>4,6 mm</td>
</tr>
<tr>
<td>Teilkreisdurchmesser Ritzel (innen)</td>
<td>$d_{i1} = d_{m1} \cdot R_v/R_m$</td>
<td>75,8 mm</td>
</tr>
<tr>
<td>Teilkreisdurchmesser Rad (innen)</td>
<td>$d_{i2} = d_{m2} \cdot R_v/R_m$</td>
<td>351,10 mm</td>
</tr>
<tr>
<td>Kopfkreisdurchmesser Ritzel (außen)</td>
<td>$d_{ae1} = d_{am1} \cdot R_v/R_m$</td>
<td>96,5 mm</td>
</tr>
<tr>
<td>Kopfkreisdurchmesser Rad (außen)</td>
<td>$d_{ae2} = d_{am2} \cdot R_v/R_m$</td>
<td>405,4 mm</td>
</tr>
<tr>
<td>Fußkreisdurchmesser Ritzel (außen)</td>
<td>$d_{ie1} = d_{lm1} \cdot R_v/R_m$</td>
<td>77,6 mm</td>
</tr>
<tr>
<td>Fußkreisdurchmesser Rad (außen)</td>
<td>$d_{ie2} = d_{lm2} \cdot R_v/R_m$</td>
<td>411,4 mm</td>
</tr>
<tr>
<td>Ritzel Kopfkegelwinkel</td>
<td>$\delta_{a1} = \delta_1 + \delta_a$</td>
<td>12,99 °</td>
</tr>
<tr>
<td>Rad Kopfkegelwinkel</td>
<td>$\delta_{a2} = \delta_2 + \delta_a$</td>
<td>109,31 °</td>
</tr>
<tr>
<td>Ritzel Fußkegelwinkel</td>
<td>$\delta_{i1} = \delta_1 + \delta_i$</td>
<td>10,41 °</td>
</tr>
<tr>
<td>Rad Fußkegelwinkel</td>
<td>$\delta_{i2} = \delta_2 + \delta_i$</td>
<td>106,73 °</td>
</tr>
<tr>
<td>Überdeckungsgrad</td>
<td>$z_{v1} = z_1 / \cos(\delta_1)$</td>
<td>19,4</td>
</tr>
<tr>
<td>virtuelle Zähnezahl Ritzel</td>
<td>$z_{v2} = z_2 / \cos(\delta_2)$</td>
<td>-282,3</td>
</tr>
</tbody>
</table>
virtuelle Stirneingriffswinkel
\[\alpha_1 = \arctan\left(\frac{\tan(\alpha_t)}{\cos(\beta_m)}\right) = 21,4^\circ \]

Ritzel Teilkreisdurchmesser
\[d_1 = \frac{z_{v1}}{\cos(\beta_m)} = 20,9 \]

Rad Teilkreisdurchmesser
\[d_2 = \frac{z_{v2}}{\cos(\beta_m)} = -304,5 \]

Ritzel Kopfkreisdurchmesser
\[d_{a1} = d_1 + 2 = 22,9 \]

Rad Kopfkreisdurchmesser
\[d_{a2} = d_2 + 2 = -302,5 \]

Ritzel Grundkreisdurchmesser
\[d_{b1} = d_1 \cdot \cos(\alpha_t) = 19,5^\circ \]

Rad Grundkreisdurchmesser
\[d_{b2} = d_2 \cdot \cos(\alpha_t) = -283,5^\circ \]

Achsabstand
\[a = 0,5(z_{v1} + z_{v2})/\cos(\beta_m) = -141,8 \]

Stirneingriffsteilung
\[p_{et} = \pi \cdot \cos(\alpha_t)/\cos(\beta_m) = 3,2 \]

\[\varepsilon_{\alpha1} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2 \cdot a \cdot \sin(\alpha_t)}{2 \cdot p_{et}} = 34,53 \]

\[\varepsilon_{\alpha2} = \frac{\sqrt{d_{a1}^2 - d_{b1}^2} - \sqrt{d_{a2}^2 - d_{b2}^2} - 2 \cdot a \cdot \sin(\alpha_t)}{2 \cdot p_{et}} = 1,56 \]

Überdeckungsgrad
\[\varepsilon_\alpha = \text{WENN}(z_{v2} > 0; \varepsilon_{\alpha1}; \varepsilon_{\alpha2}) = 1,56 \]

Sprungüberdeckung
\[\varepsilon_\beta = \frac{b \cdot \sin(b_m)}{m_{nm} \cdot p} = 0,89 \]

Die Gesamtüberdeckung sollte \(\geq 1,1 \) sein.

Gesamtüberdeckung \[\varepsilon_\gamma = \varepsilon_\beta + \varepsilon_\alpha = 2,45 \geq 1,1 \]
Abmessungen geradverzahnter Kegelräder

System:
- äußerer Modul $m_e = 8 \text{ mm}$
- Ritzel Zähnezahl $z_1 = 22$
- Rad Zähnezahl $z_2 = 67$
- Eingriffswinkel $\alpha = 20 ^\circ$
- Achsenwinkel $\Sigma = 90 ^\circ$
- Zahnbreite $b = 50 \text{ mm}$
- Faktor für die Berechnung des Kopfspiels $f_1 = 0,25$
Berechnung:

Kopfhöhe (außen) \(h_{ae} = \) \(m_e \) = 8 mm
Kopfspiel (außen) \(c_e = f_1 \cdot m_e \) = 2,00 mm
Fußhöhe (außen) \(h_{fe} = c_e + h_{ae} \) = 10,00 mm
Zähnezahlverhältnis \(u = \frac{z_2}{z_1} \) = 3,045

Teilkreisdurchmesser Ritzel (außen) \(d_{e1} = \) \(z_1 \cdot m_e \) = 176,0 mm
Teilkreisdurchmesser Rad (außen) \(d_{e2} = \) \(z_2 \cdot m_e \) = 536,0 mm

Teilkreisdurchmesser Ritzel (außen) \(d_{ae1} = d_{e1} + 2 \cdot h_{ae} \cdot \cos(\delta) \) = 191,2 mm
Teilkreisdurchmesser Ritzel (außen) \(d_{ae2} = d_{e2} + 2 \cdot h_{ae} \cdot \cos(\delta) \) = 541,0 mm
Fußkreisdurchmesser Ritzel (außen) \(d_{fe1} = d_{e1} - 2 \cdot h_{fe} \cdot \cos(\delta) \) = 157,0 mm
Fußkreisdurchmesser Ritzel (außen) \(d_{fe2} = d_{e2} - 2 \cdot h_{fe} \cdot \cos(\delta) \) = 529,8 mm

Teilkreisdurchmesser Rad (außen) \(d_{e1} = \) \(\frac{d_{e1}}{2 \cdot \sin(\delta)} \) = 282,0 mm

Teilung (außen) \(p_e = m_e \cdot \pi \) = 25,1 mm
Teilkreislänge (außen) \(R_e = \) \(\frac{d_{e1}}{2 \cdot \sin(\delta)} \) = 282,0 mm

mittlerer Modul \(m_m = m_e \cdot \left(1 - 0,5 \cdot b/R_e\right) \) = 7,291 mm
innerer Modul \(m_i = m_e \cdot \left(1 - b/R_e\right) \) = 6,582 mm

mittlerer Teilkreisdurchmesser Ritzel \(d_{m1} = z_1 \cdot m_m \) = 160,4 mm
mittelte Teilkreisdurchmesser Rad \(d_{m2} = z_2 \cdot m_m \) = 488,5 mm
innerer Teilkreisdurchmesser Ritzel \(d_{i1} = z_1 \cdot m_i \) = 144,8 mm
innerer Teilkreisdurchmesser Rad \(d_{i2} = z_2 \cdot m_i \) = 441,0 mm
innerer Teilkreisdurchmesser Ritzel \(d_{a1} = d_{i1} + 2 \cdot m_i \cdot \cos(\delta) \) = 157,3 mm
innerer Teilkreisdurchmesser Rad \(d_{a2} = d_{i2} + 2 \cdot m_i \cdot \cos(\delta) \) = 445,1 mm

Kopfwinkel \(\varphi_a = \) \(\arctan(h_{ae}/R_e) \) = 1,62 °
Fußwinkel \(\varphi_f = \) \(\arctan(h_{fe}/R_e) \) = 2,03 °
Ritzel Kopfkegelwinkel \(\delta_{a1} = \) \(\delta_1 + \varphi_a \) = 19,80 °
Rad Kopfkegelwinkel \(\delta_{a2} = \) \(\delta_2 + \varphi_a \) = 73,44 °
Ritzel Fußkegelwinkel \(\delta_{i1} = \) \(\delta_1 - \varphi_f \) = 16,15 °
Rad Fußkegelwinkel \(\delta_{i2} = \) \(\delta_2 - \varphi_f \) = 69,79 °

Überdeckungsgrad

virtuelle Zähnezahl Ritzel \(z_{v1} = \) \(z_1 / \cos(\delta_1) \) = 23
virtuelle Zähnezahl Rad \(z_{v2} = \) \(z_2 / \cos(\delta_2) \) = 215
Ritzel Kopfkehrdurchmesser \(d_{a1} = z_{v1} + 2 \) = 25
Rad Kopfkehrdurchmesser \(d_{a2} = z_{v2} + 2 \) = 217
Ritzel Grundkehrdurchmesser \(d_{b1} = z_{v1} \cdot \cos(\alpha) \) = 21,6 °
Rad Grundkehrdurchmesser \(d_{b2} = z_{v2} \cdot \cos(\alpha) \) = 202,0 °

Achsabstand \(a = 0,5 \cdot (z_{v1} + z_{v2}) \) = 119,0
Eingriffsteilung \(p_e = \pi \cdot \cos(\alpha) \) = 2,95

\[\varepsilon_a = \sqrt{d_{a1}^2 - d_{b1}^2} + \sqrt{d_{a2}^2 - d_{b2}^2} - 2 \cdot a \cdot \sin(a) \]
\[2 \cdot p_e \]

\[\varepsilon_a = 1,77 > 1,1 \]
Abmessungen Zylinderschneckengetriebe

System:
ZN-Zylinderschnecke
Achswinkel $\Sigma = 90^\circ$
Axialmodul = Stirnmodul bei einem Achsenwinkel $\Sigma = 90^\circ$
Modul $m = 4,00 \text{ mm}$
Eingriffswinkel $\alpha = 20,00^\circ$
Achsabstand $a = 125,00 \text{ mm}$
Drehzahl der Schnecke $n_1 = 1440 \text{ 1/min}$
Drehzahl Schneckenrad $n_2 = 55,00 \text{ 1/min}$
Mittenkreisdurchmesser $d_{m1} = 40,00 \text{ mm}$
Faktor zur Berechnung des Kopfspiels des Schneckenrades $f = 0,20$
Kopfspiel des Rades $c_2 = m \cdot f = 0,80 \text{ mm}$

Berechnung:
Axialteilung $p = m \cdot \pi = 12,57 \text{ mm}$
Schneckenformzahl $q = \frac{d_{m1}}{m} = 10,00$
Übersetzung $i = \frac{n_1}{n_2} = 26,18$
gewählt $z_1 = 2$
Zähnezahl $z_2 = i \cdot z_1 = 52,36$
gewählt $z_2 = 52$
Teilkreisdurchmesser $d_2 = m \cdot z_2 = 208,0 \text{ mm}$
Profilverschiebungsfaktor am Schneckenrad
Profilverschiebungsfaktor $x = \frac{a \cdot 0,5 \cdot (d_{m1} + d_2)}{m} = 0,25$
Schneckenkopfhöhe $h_{b1} = m = 4,00 \text{ mm}$
Schneckenfußhöhe $h_{f1} = 1,2 \cdot m = 4,80 \text{ mm}$
Kopfhöhe des Rades $h_{b2} = m \cdot (1+x) = 5,00 \text{ mm}$
Fußhöhe des Rades $h_{f2} = m \cdot (1-x) + c_2 = 3,80 \text{ mm}$
Kopfkreisdurchmesser Schnecke $d_{b1} = d_{m1} + 2 \cdot h_{b1} = 48,00 \text{ mm}$
Fußkreisdurchmesser Schnecke $d_{f1} = d_{m1} - 2 \cdot h_{f1} = 30,40 \text{ mm}$
Kopfkreisdurchmesser Rad $d_{a2} = d_2 + 2 \cdot h_{a2} = 218,00$ mm
Fußkreisdurchmesser Rad $d_{b2} = d_2 - 2 \cdot h_{b2} = 200,40$ mm
Schneckenbreite $b_1 = \sqrt{d_{a2}^2 - d_2^2} = 65$ mm
Radbreite $b_2 = \sqrt{d_{a1}^2 - d_{m1}^2 + 2 \cdot m} = 35$ mm
Mittensteigungswinkel $\gamma_m = \arctan\left(\frac{m \cdot z_1}{d_{m1}}\right) = 11,31^\circ$
Normalteilung $p_n = p \cdot \cos(\gamma_m) = 12,33$ mm
Eingriffswinkel Axialschnitt $\alpha = \arctan\left(\frac{\tan(\alpha_n)}{\cos(\gamma_m)}\right) = 20,36^\circ$
Gleitgeschwindigkeit $v_g = \frac{d_{m1} \cdot \pi \cdot n_1}{60 \cdot 10^{-3} \cdot \cos(\gamma_m)} = 3,08$ mm/Std.
Grundkreisdurchmesser des Rades $d_{b2} = d_2 \cdot \cos(\alpha) = 195,01$ mm
Eingriffsteilung $p_e = p \cdot \cos(\alpha) = 11,78$ mm

Überdeckungsgrad
$$
\varepsilon_{a1} = \frac{\sqrt{d_{a2}^2 \cdot d_{b2}^2 + 2 \cdot m \cdot (1 - x) \cdot \sin(\alpha) \cdot d_2 \cdot \sin(\alpha)}}{2 \cdot p_e} = 1,80
$$
Nichtschaltbare elastische Kupplung

Drehzahl \(n = 1200,00 \text{ 1/min} \)
Wechseldrehmoment \(T_{A0,5} = 330,00 \text{ Nm} \)
Lastdrehmoment \(T_L = 160,00 \text{ Nm} \)
Trägheitsmoment \(J_A = 6,10 \text{ kgm}^2 \)
Trägheitsmoment \(J_L = 2,20 \text{ kgm}^2 \)
Temperaturfaktor \(S_t = 1,40 \)
Anlauffaktor \(S_z = 1,00 \)
Ordnungszahl \(i = 0,50 \)

Die Kupplung wird nach dem Nenndrehmoment bzw. Wechseldrehmoment ausgelegt, da keine Drehmomentenstöße auftreten und eine Wellenlagerung nicht maßgebend ist.

Nenndrehmoment:
untere Werte beziehen sich auf die hochelastische Wulstkupplung (Radaflex-Kupplung, Bauform 300)
verhältnismäßige Dämpfung \(\psi = 1,20 \text{ Nm/rad} \)
_DEFINITION: fiktives Drehmoment \(T'_k = T_L \cdot S_t \)
Baugröße \(B = \text{TAB("Getriebe/Kuppl"; Bez; } T_{KN} > T'_k \) \)
Nenndrehmoment \(T_{KN} = \text{TAB("Getriebe/Kuppl"; } T_{KN}; \text{ Bez=B} \) \)
Maximaldrehmoment \(T_{Kmax} = 3 \cdot T_{KN} \)
Dauerwechseldrehmoment \(T_{KW} = 0,4 \cdot T_{KN} \)
Drehfederseite \(C_{tdyn} = \text{TAB("Getriebe/Kuppl"; } C_{tdyn}; \text{ Bez=B} \) \)
Trägheitsmoment \(J_1 = \text{TAB("Getriebe/Kuppl"; } J; \text{ Bez=B} \) \)
max. Drehzahl \(n_{max} = \text{TAB("Getriebe/Kuppl"; } n_{max}; \text{ Bez=B} \) \)

\[J_A = J_A + J_1 \]
\[J_L = J_L + J_1 \]

Vergrößerungsfaktor in Resonanzhöhe:
\[V_R = \frac{2 \cdot \pi}{\psi} \]
\[T'_k = J_L \cdot (J_A + J_1) \cdot V_R \cdot S_z \cdot S_t \]
\[T'_k / T_{Kmax} = 0,87 < 1 \]
Überprüfung, ob die Resonanzfrequenz außerhalb der Betriebsfrequenz liegt:

\[\omega_e = \sqrt{C_{T_{dyn}} \frac{J_A + J_L}{J_A * J_L}} \]

kritische Kreisfrequenz:

\[\omega_k = \frac{\omega_e}{i} \]

\[n_k = \frac{\omega_k * 60}{2 * \pi} \]

\[\frac{\sqrt{2}}{(\frac{n}{n_k})} = 0,64 < 1 \]

\[\Rightarrow \text{Betriebsfrequenz liegt über der kritischen Kreisfrequenz und garantiert einen ruhigen Lauf.} \]

Nachweis der Dauerwechselfestigkeit:

Vergrößerungsfaktor außerhalb der Resonanz:

\[\omega = \frac{n * 2 * \pi}{60} \]

\[S_I = \sqrt{\frac{\omega}{\omega_k}} \]

\[V = \frac{1}{\text{abs}\left(\frac{\omega}{\omega_k}\right)^2 - 1} \]

\[T_k = \frac{J_L}{J_A + J_L} * T_{A0,5} * V * S_I * S_I \]

\[T_k / T_{KW} = 0,48 < 1 \]

\[\Rightarrow \text{Die Kupplung ist Dauerfest.} \]
Evolventenverzahnung

Geometrie:
- Teilkreisdurchmesser \(d = 70\ \text{mm}\)
- Zahndicke \(s = 6,30\ \text{mm}\)
- Eingriffswinkel \(\alpha_{\text{Grad}} = 20,00^\circ\)
- Eingriffswinkel \(\alpha_{\text{Rad}} = \alpha_{\text{Grad}} \times \pi/180 = 0,34907\ \text{rad}\)
- Durchmesser, für den die Zahndicke berechnet wird \(d_y = 76,00\ \text{mm}\)
- Durchmesser Grundkreis \(d_b = d \times \cos(\alpha_{\text{Grad}}) = 65,78\ \text{mm}\)

Wird die Berechnung am Grundkreis geführt?
- \(f = \) WENN\((d_y = d_b; 1;\)WENN\((d_y > d_b; 2; 3)) = 2\)
- Antwort = TAB("Getriebe/Abf";Ans;Wt = f) = nein

Eingriffswinkel bei \(d_y\)
- \(\alpha_{y[\text{Grad}]} = \) ACOS\((d_b/d_y) = 30,06^\circ\)
- \(\alpha_{y[\text{Rad}]} = \) \(\alpha_{y[\text{Grad}]} \times \pi/180 = 0,52\ \text{rad}\)

Evolventenfunktion \(\text{inv}\alpha = \) TAN\((\alpha_{y[\text{Grad}]} - \alpha_{y[\text{Rad}]} = 0,0149\)

Evolventenfunktion \(\text{inv}\alpha_y = \) TAN\((\alpha_{y[\text{Grad}]} - \alpha_{y[\text{Rad}]}) = 0,0587\)

Zahndicke \(s_y = d_y \times \left(\frac{s}{d} + \text{inv}\alpha - \text{inv}\alpha_y\right) = 3,511\ \text{mm}\)
Zylinderschneckenge triebe mit Festigkeitsnachweis u. Schmierung

System:

Zylinderschnecke Typ = ZN
Schneckenwerkstoff
WS_S = GEW("Material/Werkstoff";Bez;) = C45
Schneckenrad Werkstoff
WS_R = GEW("Getriebe/Schneckenrad";Bez;) = GZ-CuSn12
Abtriebsnennleistung P_N2 = 1,50 kW
Achsenwinkel Σ = 90°
Axialmodul = Stirnmodul bei einem Achsenwinkel Σ = 90°
Modul m = 4,00
Erzeugungswinkel α_0 = 20,00°
Eingriffswinkel Normalschnitt α_n
α_n = WENN(Typ="ZN" ODER Typ="ZK" ODER Typ="ZI" ;α_0 ;0) = 20,00°
Achsabstand a = 125,00 mm
Drehzahl der Schnecke n_1 = 1450,0 1/min
Übersetzung i = 26
Drehzahl des Rades n_2 = n_1 / i = 55,8 1/min
Mittenkreisdurchmesser d_m1 = 40,00 mm
Faktor zur Berechnung des Kopfspiels des Schneckenrades
f = 0,20
Kopfspiel des Rades c_2 = m * f = 0,80 mm
Anwendungsfaktor K_A = 1,30
Berechnung:

Axialteilung \(p = m \times \pi \) = 12,57 mm

Schneckenformzahl \(q = \frac{m}{m} \) = 10,00

\[z_1 = \text{WENN}(i>30;1;\text{WENN}(i>15;2;\text{WENN}(i>10;3;4))) \] = 2

\[z_2 = i \times z_1 \] = 52

Teilkreisdurchmesser \(d_2 = m \times z_2 \) = 208,0 mm

Profilverschiebungsfaktor am Schneckenrad

\[x = \frac{a - 0,5 \times (d_{m1} + d_2)}{m} \] = 0,25

Schneckenkopfhöhe \(h_{a1} = m \) = 4,00 mm

Schneckenfußhöhe \(h_1 = 1,2 \times m \) = 4,80 mm

Kopfhöhe des Rades \(h_{a2} = m \times (1 + x) \) = 5,00 mm

Fußhöhe des Rades \(h_{f2} = m \times (1 - x) + c_2 \) = 3,80 mm

Kopfkreisdurchmesser Schnecke \(d_{a1} = d_{m1} + 2 \times h_{a1} \) = 48,00 mm

Fußkreisdurchmesser Schnecke \(d_{a1} = d_{m1} - 2 \times h_1 \) = 30,40 mm

Kopfkreisdurchmesser Rad \(d_{a2} = d_2 + 2 \times h_{a2} \) = 218,00 mm

Fußkreisdurchmesser Rad \(d_{a2} = d_2 - 2 \times h_{f2} \) = 200,40 mm

Mittensteigungswinkel \(\gamma_m = \tan \left(\arctan \left(\frac{m \times z_1}{d_{m1}} \right) \right) \) = 11,31 °

Normalteilung \(p_n = p \times \cos(\gamma_m) \) = 12,33 mm

Eingriffswinkel Axialschnitt \(\alpha = \arctan \left(\frac{\tan(\alpha_n)}{\cos(\gamma_m)} \right) \) = 20,36 °

Gleitgeschwindigkeit \(v_g = \frac{d_{m1} \times \pi \times n_1}{60 \times 10^{-3}} \times \cos(\gamma_m) \) = 3,1 m/s

Ausführung A: Schnecken gefräst oder gedreht, vergütet

Ausführung B: Schnecken gehärtet und Flanken geschliffen

Ausführungsart AF = GEW("Getriebe/SReib";Af;) = A

Reibungswinkel

\[\rho = \text{TAB}("Getriebe/SReib"; \rho ; \text{Af}=AF;v_g=v_g) \] = 3,97 °

Wirkungsgrad der Schraubung \(\eta_S = \frac{\tan(\gamma_m)}{\tan(\gamma_m + \rho)} \) = 0,73

Gesamtwirkungsgrad \(\eta_{ges} = 0,98 \times \eta_S \) = 0,72

Antriebsnennleistung \(P_{n1} = \frac{P_{N2}}{\eta_{ges}} \) = 2,08 kW

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Kräfte am Schneckenrad

Umfangsgeschwindigkeit \(v_2 \):

\[
v_2 = \frac{d_2 \cdot 10^{-3} \cdot \pi \cdot n_2}{60} = 0,6 \text{ m/s}
\]

Tangentialkraft \(F_{t2} \):

\[
F_{t2} = \frac{P_{N2} \cdot 10^3}{v_2} \cdot K_A = 3250 \text{ N}
\]

Axialkraft \(F_{a2} \):

\[
F_{a2} = F_{t2} \cdot \tan(\gamma_m + \rho) = 888 \text{ N}
\]

Radialkraft \(F_{r2} \):

\[
F_{r2} = \frac{F_{t2} \cdot \cos(\rho) \cdot \tan(\alpha_n)}{\cos(\gamma_m + \rho)} = 1223 \text{ N}
\]

Kräfte an der Schnecke

Tangentialkraft \(F_{t1} \):

\[
F_{t1} = F_{a2} = 888 \text{ N}
\]

Axialkraft \(F_{a1} \):

\[
F_{a1} = F_{t2} = 3250 \text{ N}
\]

Radialkraft \(F_{r1} \):

\[
F_{r1} = F_{r2} = 1223 \text{ N}
\]

Drehmomente

Schnecke \(T_1 \):

\[
T_1 = \frac{F_{t1} \cdot d_{m1} \cdot 10^{-3}}{2} = 17,8 \text{ Nm}
\]

Rad \(T_2 \):

\[
T_2 = \frac{F_{t2} \cdot d_2 \cdot 10^{-3}}{2} = 338,0 \text{ Nm}
\]

Nachweis auf Selbsthemmung (SH):

Abfrage \(Abf \):

\[
\text{Abf} = \text{WENN}(\gamma_m > \rho ; 1;0) = 1
\]

TAB("Getriebe/Abf";KSH;Wert = Abf) = keine Selbsthemmung

Schmierungsart

Umfangskraft \(v_1 \):

\[
v_1 = \frac{d_{m1} \cdot 10^{-3} \cdot \pi \cdot n_1}{60} = 3,04 \text{ m/s}
\]

Schmierkennwert \(K_S \):

\[
K_S = \frac{T_2}{(a \cdot 10^{-3})^3 \cdot n_1} = 7,16 \cdot 10^3 \text{ Pa\cdot s}
\]

ggeeignete Ölviskosität bei 40° C

Ölviskosität \(v_{40} \):

\[
v_{40} = \text{TAB("Getriebe/SÖlv";v_{40} ; K_S=K_S)} = 284,35 \text{ mm}^2/\text{s}
\]

gewählt (nach DIN 51519) : ISO VG 320
Tragfähigkeitsnachweis
\[\varepsilon_p = \frac{d_{m1}}{a} = 0,32 \]
\[Z_y = \text{TAB("Getriebe/SKFkt"; } Z_y; \varepsilon = \varepsilon_p) = 3,02 \]
\[Z_E = \text{TAB("Getriebe/Schneckrad"; } Z_E; \text{Bez }= WS_R) = 147 \text{ (N/mm}^2\text{)}^{1/2} \]

Hertzschen Pressung
\[\sigma_H = \sqrt{\frac{F_{t2} \cdot d_2}{2 \cdot Z_E \cdot Z_p}} = 184,68 \text{ N/mm}^2 \]

\[\sigma_{Hlim} = \text{TAB("Getriebe/Schneckrad"; } \sigma_{Hlim}; \text{Bez }= WS_R) = 425,0 \text{ N/mm}^2 \]

Sicherheit gegen Grübchen
\[S_H = \frac{\sigma_{Hlim}}{\sigma_H} = 2,3 > 1,6 \]

Es handelt sich um ein Dauergetriebe, wenn \(S_H > 1,6 \) ist.

LD = \text{TAB("Getriebe/Abf"; } LD; S\geq S_H) = \text{lange Lebensdauer}

Lebensdauer in Std.
\[L_H = 25000 \cdot S_H^6 = 3,701 \cdot 10^6 \text{ h} \]

Überprüfung der Durchbiegung
(Schnecke vergürtet) \(f_{grenz,v} = 0,010 \cdot m \) = 0,040
(Schnecke gehärtet) \(f_{grenz,g} = 0,004 \cdot m \) = 0,016
zul. Durchbiegung \(f_{grenz} = \text{WENN(AF="A" ; } f_{grenz,v} ; f_{grenz,g}) = 0,040 \]

maximale Durchbiegung unter der Annahme : Lagerabstand \(l_1 = 1,5 \cdot a \)
\[l_1 = 1,5 \cdot a = 188 \text{ mm} \]
\[f_{max} = \frac{2 \cdot l_1^3 \cdot F_{t2} \cdot \sqrt{\left(\tan(\gamma_m + \rho) \right)^2 + \left(\frac{\alpha_0}{\cos(\gamma_m)} \right)^2}}{d_{m1}^4 \cdot 10^6} = 0,00789 \text{ mm} \]

Durchbiegesicherheit
\[S_D = \frac{f_{grenz}}{f_{max}} = 5,07 \geq 1 \]
Zahnkräfte an Stirnräder/ dreistufiges Getriebe

System:

\[P_{\text{Nb}} = P_{\text{N4}} \]

Nennleistung Abtrieb \(P_{\text{Nb}} = 3,400 \text{ kW} \)

für Zangenstapelpaar gilt \(n_b = 0 \).

Abtriebsdrehzahl \(n_b = 13,00 \text{ min}^{-1} \)

Arbeitsweise (getriebene Maschine)

\[\text{GMa} = \text{GEW(”Beiwerte/AnwF”;GM;)} = \text{mäßige Stöße} \]

Arbeitsweise (Antriebsmaschine)

\[\text{AMa} = \text{GEW(”Beiwerte/AnwF”;AM;)} = \text{leichte Stöße} \]

Anwendungsfaktor \(K_A \)

\[K_A = \text{TAB(”Beiwerte/AnwF”;KA ;GM=GMa;AM=AMa)} = 1,35 \]

Stufe 1

Wirkungsgrad \(\eta_1 = 0,94 \)

Betriebswälzkreisdurchmesser Ritzel \(d_{w1} = 25,00 \text{ mm} \)

Betriebswälzkreisdurchmesser Rad \(d_{w2} = 118,00 \text{ mm} \)

Eingriffswinkel \(\alpha_{w1} = 22,20 ^\circ \)

für Geradverzahnung ist \(\beta = 0 \)

Schrägungswinkel \(\beta_1 = 0 ^\circ \)
Stufe 2
Wirkungsgrad $\eta_2 = 0,94$
Betriebswälzkreisdurchmesser Ritzel $d_{w3} = 45,00$ mm
Betriebswälzkreisdurchmesser Rad $d_{w4} = 210,00$ mm
Eingriffswinkel $\alpha_{wt2} = 21,50$ °
für Geradverzahnung ist $\beta = 0$
Schrägungswinkel $\beta_2 = 0$ °

Stufe 3
Wirkungsgrad $\eta_3 = 0,94$
Betriebswälzkreisdurchmesser Ritzel $d_{w5} = 60$ mm
Betriebswälzkreisdurchmesser Rad $d_{w6} = 272,00$ mm
Eingriffswinkel $\alpha_{wt3} = 20$ °
für Geradverzahnung ist $\beta = 0$
Schrägungswinkel $\beta_3 = 0$ °

Berechnung:

\[P_b = P_6 \]
Abtriebsleistung $P_b = P_{nb} \cdot K_A = 4,590$ kW
\[P_4 = P_5 \]
Zahnradleistung $P_4 = P_b / \eta_3 = 4,883$ kW
\[P_2 = P_3 \]
Zahnradleistung $P_2 = P_4 / \eta_2 = 5,195$ kW
\[P_a = P_1 \]
Antriebsdrehzahl $P_a = P_2 / \eta_1 = 5,527$ kW

Drehzahlen der Zahnräder 2 und 3, dabei ist $n_2 = n_3$
\[n_4 = n_b \cdot d_{w6} / d_{w5} = 58,9$ min$^{-1}$

Drehzahlen der Zahnräder 2 und 3, dabei ist $n_2 = n_3$
\[n_2 = n_4 \cdot d_{w4} / d_{w3} = 274,9$ min$^{-1}$

Antriebsdrehzahl $n_a = n_2 \cdot d_{w2} / d_{w1} = 1298$ min$^{-1}$

Umfangsgeschwindigkeit der Wälzkreise:

> 1. Stufe
\[u_{w1} = \frac{d_{w2} \cdot \pi \cdot n_2 / 60}{1000} = 1,698$ m/s

> 2. Stufe
\[u_{w2} = \frac{d_{w4} \cdot \pi \cdot n_4 / 60}{1000} = 0,648$ m/s

> 3. Stufe
\[u_{w3} = \frac{d_{w6} \cdot \pi \cdot n_6 / 60}{1000} = 0,185$ m/s
Zahnkräfte

> 1. Stufe
Tangentialkraft $F_{11} = F_{12}$

$$F_{11} = \frac{P_2}{u_{w1}} \times 1000 = 3059,5 \text{ N}$$

Radialkraft $F_{r1} = F_{r2}$

$$F_{r1} = F_{11} \times \tan(\alpha_{w1}) = 1248,6 \text{ N}$$

Axialkraft $F_{a1} = F_{a2}$

$$F_{a1} = F_{11} \times \tan(\beta_1) = 0 \text{ N}$$

> 2 Stufe
Tangentialkraft $F_{13} = F_{14}$

$$F_{13} = \frac{P_4}{u_{w2}} \times 1000 = 7535,5 \text{ N}$$

Radialkraft $F_{r3} = F_{r4}$

$$F_{r3} = F_{13} \times \tan(\alpha_{w2}) = 2968,3 \text{ N}$$

Axialkraft $F_{a3} = F_{a4}$

$$F_{a3} = F_{13} \times \tan(\beta_2) = 0 \text{ N}$$

> 3 Stufe
Tangentialkraft $F_{15} = F_{15}$

$$F_{15} = \frac{P_b}{u_{w3}} \times 1000 = 24810,8 \text{ N}$$

Radialkraft $F_{r5} = F_{r5}$

$$F_{r5} = F_{15} \times \tan(\alpha_{w3}) = 9030,4 \text{ N}$$

Axialkraft $F_{a5} = F_{a5}$

$$F_{a5} = F_{15} \times \tan(\beta_3) = 0 \text{ N}$$

Abtriebsdrehmoment

$$M_b = \text{WENN}(n_b = 0; 0; \frac{P_b \times 60}{2 \pi \times n_b} \times 1000) = 3371,64 \text{ Nm}$$

Drehmoment der Zahnräder, $M_4 = M_5$

$$M_4 = \frac{M_b}{d_{w5} \times \eta_3} = 791,22 \text{ Nm}$$

Drehmoment der Zahnräder, $M_2 = M_3$

$$M_2 = \frac{M_4}{d_{w4} \times \eta_2} = 180,37 \text{ Nm}$$

Antriebsdrehmoment

$$M_a = \text{WENN}(M_b = 0; \frac{P_a}{u_{w1} / \left(\pi \times 2 \times n_a\right)}; \frac{M_b \times d_{w1}}{\eta_2 \times d_{w2}}) = 40,65 \text{ Nm}$$

Antriebsnenndrehmoment

$$M_{N1} = \frac{M_a}{K_A} = 30,11 \text{ Nm}$$
Zahnkräfte an Stirnräder/ Getriebe einstufig

System:

Nennleistung Abtrieb $P_{nb} = 4,800 \text{ kW}$

für Zangenstabpaar gilt $n_b = 0$.

Abtriebsdrehzahl $n_b = 7,5 \text{ min}^{-1}$

Arbeitsweise (getriebene Maschine)

$GM_a = \text{GEW("Beiwerte/AnwF";GM;)} = \text{mäßige Stöße}$

Arbeitsweise (Antriebsmaschine)

$AM_a = \text{GEW("Beiwerte/AnwF";AM;)} = \text{leichte Stöße}$

Anwendungsfaktor K_A

$K_A = \text{TAB("Beiwerte/AnwF";KA ;GM=GMa;AM=AMa)} = 1,35$

Wirkungsgrad $\eta = 0,94$

Betriebswälzkreisdurchmesser Ritzel $d_{w1} = 180 \text{ mm}$

Betriebswälzkreisdurchmesser Rad $d_{w2} = 912 \text{ mm}$

Eingriffswinkel $\alpha_{wt} = 20 ^\circ$

für Geradverzahnung ist $\beta = 0$

Schrägungswinkel $\beta = 0 ^\circ$
Berechnung:

Abtriebsleistung

\[P_b = P_{Nb} \cdot K_A = 6,480 \text{ kW} \]

Antriebsdrehzahl

\[P_a = \frac{P_b}{\eta} = 6,894 \text{ kW} \]

Umfangsgeschwindigkeit der Wälzkreise:

\[\nu_w = \frac{d_{w2} \cdot \pi \cdot n_b}{1000} = 0,358 \text{ m/s} \]

Antriebsdrehzahl

\[n_a = \begin{cases} \nu_w \cdot 60 \cdot \pi \cdot n_b / d_{w1} \cdot 1000 & \text{IF } n_b = 0 \\ \nu_w \cdot \frac{d_{w2}}{d_{w1}} & \text{ELSE} \end{cases} = 38 \text{ min}^{-1} \]

Tangentialkraft \(F_{t1} = F_{t2} \)

\[F_{t1} = \frac{P_b \cdot 1000}{\nu_w} = 18101 \text{ N} \]

Radialkraft \(F_{r1} = F_{r2} \)

\[F_{r1} = F_{t1} \cdot \tan(\alpha_{wt}) = 6588 \text{ N} \]

Axialkraft \(F_{a1} = F_{a2} \)

\[F_{a1} = F_{t1} \cdot \tan(\beta) = 0 \text{ N} \]

Abtriebsdrehmoment

\[M_b = \begin{cases} \frac{P_b \cdot 60}{2 \cdot \pi \cdot n_b} & \text{IF } n_b = 0 \\ \frac{P_a \cdot 60 \cdot 1000}{2 \cdot \pi \cdot n_a} \cdot \frac{M_b}{d_{w1}} & \text{ELSE} \end{cases} = 8251 \text{ Nm} \]

Antriebsdrehmoment

\[M_a = \begin{cases} \frac{P_a \cdot 60 \cdot 1000}{2 \cdot \pi \cdot n_a} \cdot \frac{M_b}{d_{w2}} & \text{IF } M_b = 0 \\ \frac{P_a \cdot 60 \cdot 1000}{2 \cdot \pi \cdot n_a} \cdot \frac{M_a}{d_{w1}} & \text{ELSE} \end{cases} = 1732 \text{ Nm} \]

Antriebsnenndrehmoment

\[M_{N1} = \frac{M_a}{K_A} = 1283 \text{ Nm} \]
Zahnkräfte an Stirnräder/ zweistufiges Getriebe

System:

\[P_{Nb} = P_{N4} \]
Nennleistung Abtrieb \(P_{Nb} = 2,300 \, \text{kW} \)
für Zangenstabpaar gilt \(n_b = 0 \).
Abtriebsdrehzahl \(n_b = 59,00 \, \text{min}^{-1} \)
Arbeitsweise (getriebene Maschine)
\(GMa = \text{GEW("Beiwerte/AnwF";GM;) = gleichmäßig} \)
Arbeitsweise (Antriebsmaschine)
\(AMa = \text{GEW("Beiwerte/AnwF";AM;) = gleichmäßig} \)
Anwendungsfaktor \(K_A = \text{TAB("Beiwerte/AnwF";KA ;GM=GMa;AM=AMa)} = 1,00 \)

Stufe 1
Wirkungsgrad \(\eta_1 = 0,96 \)
Betriebswälzkreisdurchmesser Ritzel \(d_{w1} = 27 \, \text{mm} \)
Betriebswälzkreisdurchmesser Rad \(d_{w2} = 156 \, \text{mm} \)
Eingriffswinkel \(\alpha_{w1} = 20 ^\circ \)
für Geradverzahnung ist \(\beta = 0 \)
Schrägungswinkel \(\beta_1 = 0 ^\circ \)

Stufe 2
Wirkungsgrad \(\eta_2 = 0,96 \)
Betriebswälzkreisdurchmesser Ritzel \(d_{w3} = 57 \, \text{mm} \)
Betriebswälzkreisdurchmesser Rad \(d_{w4} = 240 \, \text{mm} \)
Eingriffswinkel \(\alpha_{w2} = 20 ^\circ \)
für Geradverzahnung ist \(\beta = 0 \)
Schrägungswinkel \(\beta_2 = 0 ^\circ \)
Berechnung:

\[P_b = P_4 \]
\[P_{2} = P_3 \]
\[P_2 = P_3 \]
\[\text{Abtriebsleistung } P_b = P_{Nb} \cdot K_A = 2,300 \text{ kW} \]
\[P_2 = P_3 \]
\[\text{Zahnradleistung } P_2 = \frac{P_b}{\eta_2} = 2,396 \text{ kW} \]
\[P_a = P_1 \]
\[\text{Antriebsdrehzahl } P_a = \frac{P_2}{\eta_1} = 2,496 \text{ kW} \]

Drehzahlen der Zahnräder 2 und 3, dabei ist \(n_2 = n_3 \)

\[n_2 = \frac{n_b \cdot d_{w4}}{d_{w3}} = 248,4 \text{ min}^{-1} \]

\[\text{Antriebsdrehzahl } n_a = n_2 \cdot \frac{d_{w2}}{d_{w1}} = 1435,2 \text{ min}^{-1} \]

Umfangsgeschwindigkeit der Wälzkreise:

> 1. Stufe

\[v_{w1} = \frac{d_{w2} \cdot \pi \cdot n_2}{1000} = 2,029 \text{ m/s} \]

> 2. Stufe

\[v_{w2} = \frac{d_{w4} \cdot \pi \cdot n_b}{1000} = 0,741 \text{ m/s} \]

Zahnkräfte

> 1. Stufe

Tangentialkraft \(F_{11} = F_{12} \)

\[F_{11} = \frac{P_2}{v_{w1}} \cdot 1000 = 1181 \text{ N} \]

Radialkraft \(F_{11} = F_{12} \)

\[F_{r1} = F_{11} \cdot \tan(\alpha_{w1}) = 430 \text{ N} \]

Axialkraft \(F_{a1} = F_{a2} \)

\[F_{a1} = F_{11} \cdot \tan(\beta_1) = 0 \text{ N} \]

> 2. Stufe

Tangentialkraft \(F_{13} = F_{14} \)

\[F_{13} = \frac{P_b}{v_{w2}} \cdot 1000 = 3104 \text{ N} \]

Radialkraft \(F_{13} = F_{14} \)

\[F_{r3} = F_{13} \cdot \tan(\alpha_{w2}) = 1130 \text{ N} \]

Axialkraft \(F_{a3} = F_{a4} \)

\[F_{a3} = F_{13} \cdot \tan(\beta_2) = 0 \text{ N} \]

Abtriebsdrehmoment

\[M_b = \begin{cases} P_b \cdot 60 \cdot \frac{n_b}{2 \cdot \pi} & \text{falls } n_b > 0, \\ 0 & \text{sonst} \end{cases} \]

\[M_b = 372,26 \text{ Nm} \]

Drehmoment der Zahnräder, \(M_2 = M_3 \)
\[M_2 = \frac{M_0}{d_{w4} \cdot \eta_2} \cdot d_{w3} = 92,10 \text{ Nm} \]

Antriebsdrehmoment

\[M_a = \text{WENN}(M_b = 0; \frac{P_a}{\nu_{w1} / (\pi \cdot 2 \cdot \eta_a)}; \frac{M_2 \cdot d_{w1}}{\eta_2 \cdot d_{w2}}) = 16,60 \text{ Nm} \]

Antriebsnennendrehmoment

\[M_{N1} = \frac{M_a}{K_A} = 16,60 \text{ Nm} \]
Grübchentragfähigkeit der Kegelräder

System:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zähnezahl Ritzel z_1</td>
<td>19,0</td>
</tr>
<tr>
<td>Zähnezahl Rad z_2</td>
<td>83,0</td>
</tr>
<tr>
<td>virtuelle Zähnezahl z_{v1}</td>
<td>17,3</td>
</tr>
<tr>
<td>virtuelle Zähnezahl z_{v2}</td>
<td>-261,5</td>
</tr>
<tr>
<td>Elastizitätsmodul Rad = Ritzel</td>
<td></td>
</tr>
<tr>
<td>Elastizitätsmodul Ritzel E_1</td>
<td>206000 N/mm²</td>
</tr>
<tr>
<td>Elastizitätsmodul Rad E_2 = E_1</td>
<td>206000 N/mm²</td>
</tr>
<tr>
<td>Normalmodul an der mittleren Teilkeggellänge R_m</td>
<td></td>
</tr>
<tr>
<td>Normalmodul m_{nm}</td>
<td>3,0 mm</td>
</tr>
<tr>
<td>Zahnbreite b</td>
<td>30,0 mm</td>
</tr>
<tr>
<td>Schrägzahlgwinkel β_m</td>
<td>22,00°</td>
</tr>
<tr>
<td>Überdeckungsgrad ε_u</td>
<td>1,60</td>
</tr>
<tr>
<td>Eingriffswinkel α_n</td>
<td>20,0°</td>
</tr>
</tbody>
</table>

Verzahnungsaart:

- VA = GEW("Getriebe/Abf";VA;) = Schrägverzahnung

Sprungüberdeckung:

$$\varepsilon_\beta = \text{WENN(}VA = \text{"Geradverzahnung"}; 0; b \times \text{SIN}(\beta_m)/(m_{nm} \times \pi)) = 1,19$$

Ritzel Teilkreisdurchmesser d_1 = 74,19 mm

Rauhtiefe in den Zahnhüllrundungen:

$$R_z = 3,0 \mu m$$

Umfangsgeschwindigkeit v = 5,55 m/s

Nennleistung P_{Nb} = 22200 W

Anwendungsaktor K_A = 1,6

Lagerung

- Lag = GEW("Beiwerte/STBRF";Lg;) = beidseitig gelagertes Rad u. fliegend gelagertes Ritzel

Stirn-Breitenaktor K_{ab}

$$K_{ab} = \text{TAB("Beiwerte/STBRF"; K_{ab}; Lg = Lag)} = 2,2$$

Verzahnungsqualität:

$$Q = \text{TAB("Getriebe/VZAM"; Q; \forall v)} = 7,0$$

Werkstoff Ritzel

$$RW = \text{GEW("Getriebe/Zahnrad"; Bez;)} = 16\text{MnCr5 (Eh)}$$

Werkstoff Rad

$$RAW = \text{GEW("Getriebe/Zahnrad"; Bez;)} = 16\text{MnCr5 (gasn.)}$$

$$\sigma_{Hlim,1} = \text{TAB("Getriebe/Zahnrad"; \sigma_{Hlim}; Bez = RW)} = 1470 \text{N/mm}^2$$

$$\sigma_{Hlim,2} = \text{TAB("Getriebe/Zahnrad"; \sigma_{Hlim}; Bez = RAW)} = 1100 \text{N/mm}^2$$

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Berechnung:

Grundschrägungswinkel
\[\beta_B = \text{ASIN}(\text{SIN}(\beta_m) \cdot \text{COS}(\alpha_n)) = 20,611^\circ \]

Stirringeigungswinkel
\[\alpha_1 = \text{ATAN}(\text{TAN}(\alpha_n) / \text{COS}(\beta_m)) = 21,433^\circ \]

Zonenfaktor
\[Z_H = 2 \cdot \sqrt{\frac{\text{cos} (\beta_B)}{\text{sin} (2 \cdot \alpha_1)}} = 2,346 \]

Elastizitätsfaktor
\[Z_E = \sqrt{0.35 \cdot \frac{E_1 \cdot E_2}{E_1 + E_2}} = 189.87 \text{ (N/mm}^2)^{1/2} \]

Überdeckungsfaktor für die Flankentragfähigkeit
\[Z_t = \text{WENN}(\beta_B > 1; \frac{1}{\varepsilon_\alpha} \cdot \sqrt{\frac{4 \cdot \varepsilon_\alpha (1 - \varepsilon_\beta)}{3}} + \frac{\varepsilon_\beta}{\varepsilon_\alpha}) = 0.791 \]

Schrägenfaktor
\[Z_B = \sqrt{\text{cos} (\beta_m)} = 0.963 \]

mittlerer Teilkreisdurchmesser des virtuellen Ersatzstirnrades
\[d_{vm1} = z_{v1} \cdot \frac{m_{nm}}{\text{cos} (\beta_m)} = 56 \text{ mm} \]

tragende Zahnbreite
\[b_H = 0.85 \cdot b = 25.5 \text{ mm} \]

Nennumfangskraft am Teilkreis:
\[F_{Nt} = \frac{P}{v} = 4000.0 \text{ N} \]

Zähnezahlverhältnis (virtuell)
\[u_v = \frac{z_{v2}}{z_{v1}} = -15.116 \]

nominelle Flankenpressung
\[\sigma_{H0} = Z_H \cdot Z_E \cdot Z_r \cdot Z_\beta \cdot \sqrt{\frac{F_{Nt}}{d_{vm1} \cdot b_H} \cdot \frac{u_v + 1}{u_v}} = 548.77 \text{ N/mm}^2 \]

Linienbelastung ohne \(K_v \):
\[w = \frac{F_{Nt} \cdot K_A}{b} = 213.3 \text{ N/mm} \]

Lastkorrekturfaktor:
\[VA = \text{WENN}(VA="\text{Geradverzahnung}";1:2) = 2 \]
\[f_F = \text{TAB}(\"Getriebe/VerzFakt\"; f_F; Bez=VA; Q=Q; w=w) = 1.56 \]
\[K = \text{TAB}(\"Getriebe/VerzFakt\"; K; Bez=VA; Q=Q) = 46 \text{ s/m} \]

Zähneverhältnis
\[u = \frac{z_2}{z_1} = 4.368 \]

Dynamikfaktor:
\[K_v = 1 + f_F \cdot K \cdot z_1 \cdot v \cdot \sqrt{\frac{u}{u^2 + 10^{-5}}} = 1.074 \]
maßgebende Flankenpressung

\[\sigma_H = \sigma_{H0} \cdot \sqrt{(K_v \cdot K_{a\beta} \cdot K_A)} = 1067,00 \text{ N/mm}^2 \]

Größenfaktor berücksichtigt den Einfluss der Zahngröße

Werkstoff und Behandlung:
- St: Baustahl und Stahlguss
- V: Vergütungsstahl vergütet
- GG: Gusseisen mit Lamellengraphit (Grauguss)
- GGG: Gusseisen mit Kugelgraphit
- GTS: schwarzer Temperguss
- Eh: Einsatzstahl einsatzgehärtet
- IF: Stahl oder Gusseisen mit Kugelgraphit induktiv- oder flammgehärtet
- NTV: Nitrier- oder Vergütungsstahl nitriert
- NV: Vergüttungs- oder Einsatzstahl nitrocarbuniert

\[WSB_1 = \text{GEW("Beiwerte/GRFk";WB;)} = \text{Eh} \]
\[WSB_2 = \text{GEW("Beiwerte/GRFk";WB;)} = \text{NTV} \]

\[Z_{X1} = \text{TAB("Beiwerte/GRFk";Fk ;WB =WSB_1 ;FArt="ZX"; m_n=m_{nm})} = 1,00 \]
\[Z_{X2} = \text{TAB("Beiwerte/GRFk";Fk ;WB =WSB_2 ;FArt="ZX"; m_n=m_{nm})} = 1,00 \]

Lebensdauerfaktor \(Z_{NT} \) (nach DIN 3990). Bei Dauergetrieben ist \(Z_{NT} = 1 \)

- Lebensdauerfaktor Ritzel \(Z_{NT1} = 1,00 \)
- Lebensdauerfaktor Rad \(Z_{NT2} = 1,00 \)

Ritzel Sicherheitsfaktor

\[S_{H1} = \frac{\sigma_{Hlim,1} \cdot Z_{NT1} \cdot Z_{X1}}{\sigma_H} = 1,38 \]

Rad Sicherheitsfaktor

\[S_{H2} = \frac{\sigma_{Hlim,2} \cdot Z_{NT2} \cdot Z_{X2}}{\sigma_H} = 1,03 \]

erforderlicher Sicherheitsfaktor \(S_{Herf} = 1,00 \)

Nachweis gegen Grübchenschäden des Ritzels/Rades

- Ritzel: \(S_{Herf}/S_{H1} = 0,72 \leq 1 \)
- Rad: \(S_{Herf}/S_{H2} = 0,97 \leq 1 \)
Grübchentragfähigkeit der Stirnräder

System:

Zähnezahl Ritzel $z_1 = 19,0$
Zähnezahl Rad $z_2 = 83,0$
Elastizitätsmodul Rad $E_2 = Ritzel E_1 = 206000 \text{ N/mm}^2$
Elastizitätsmodul Rad $E_2 = E_1 = 206000 \text{ N/mm}^2$
Normalmodul $m_n = 4,0 \text{ mm}$
Zahnbreite $b = 30,0 \text{ mm}$
Schrägungswinkel $\beta = 23,58^\circ$
Überdeckungsgrad $\varepsilon = 1,32$
Normaleingriffswinkel $\alpha_n = 20,0^\circ$
Profilverschiebungsfaktoren
$x_1 = 0,60$
$x_2 = 0,30$

Verzahnungsart:
$\text{VZA} = \text{GEW}("\text{Getriebe/Abf}";VA;) = \text{Schrägverzahnung}$
Sprungüberdeckung ist bei Geradverzahnung $\varepsilon_\beta = 0$.

$\varepsilon_\beta = 0,95$
Rauhtiefe in den Zahnflanken:
$R_{Z1} = 3,0 \mu\text{m}$
$R_{Z2} = 3,0 \mu\text{m}$
Umfangsgeschwindigkeit $v = 5,55 \text{ m/s}$
Nennleistung $P_{Nb} = 20000 \text{ W}$
Anwendungsfaktor $K_A = 1,3$
Verzahnungsqualität:
$Q = \text{TAB}("\text{Getriebe/VZAM}"; Q; v<v) = 7,0$
Werkstoff Ritzel
RW = \text{GEW}("\text{Getriebe/Zahnrad}";Bez;) = E335
Werkstoff Rad
RAW = GEW("Getriebe/Zahnrad";Bez;) = E295

\[\sigma_{H\text{lim,1}} = \text{TAB("Getriebe/Zahnrad"}; \sigma_{H\text{lim,1}; \text{Bez}=RW}) = 430,0 \text{ N/mm}^2 \]

\[\sigma_{H\text{lim,2}} = \text{TAB("Getriebe/Zahnrad"}; \sigma_{H\text{lim,2}; \text{Bez}=RAW}) = 370,0 \text{ N/mm}^2 \]

Berechnung:
Ritzel Teilkreisdurchmesser \(d_1 \)
\[d_1 = \frac{z_1 \cdot m_n}{\cos (\beta)} = 82,92 \text{ mm} \]

Grundschrägungswinkel
\[\beta_B = \arcsin(\sin(\beta) \cdot \cos(\alpha_n)) = 22,080^\circ \]

Stirneingriffswinkel
\[\alpha_t = \arctan(\tan(\alpha_n) / \cos(\beta)) = 21,659^\circ \]

Null-Achsabstand
\[a_N = \frac{m_n}{2 \cdot \cos (\beta)} \cdot (z_1 + z_2) = 222,59 \text{ mm} \]

V-Achsabstand
\[a_V = a_N + (x_1 + x_2) \cdot m_n = 226,19 \text{ mm} \]

Betriebs-Eingriffswinkel
\[\alpha_{wt} = \arccos(a_n / a_V \cdot \cos(\alpha)) = 23,85^\circ \]

Zonenfaktor
\[Z_H = \sqrt{\frac{2 \cdot \cos (\beta_B)}{\cos (\alpha_t) \cdot \tan (\alpha_{wt})}} = 2,203 \]

Elastizitätsfaktor
\[Z_E = \sqrt{0,35 \cdot \frac{E_1 \cdot E_2}{E_1 + E_2}} = 189,87 \text{ (N/mm}^2)^{1/2} \]

Überdeckungsfaktor für die Flankentragfähigkeit
\[Z_z = \text{WENN}(\varepsilon_\beta > 1; \sqrt{\frac{1}{\varepsilon_\alpha} \cdot \sqrt{\frac{4 \cdot \varepsilon_\alpha \cdot (1 - \varepsilon_\beta)}{3} + \frac{\varepsilon_\beta}{\varepsilon_\alpha}}} = 0,874 \]

Schrägenfaktor
\[Z_\beta = \sqrt{\cos (\beta)} = 0,957 \]

Nennumfangskraft am Teilkreis:
\[F_{Nt} = P_{Nb} / v = 3603,6 \text{ N} \]

Zähnezahlverhältnis
\[u = z_2 / z_1 = 4,368 \]

nominelle Flankenpressung
\[\sigma_{H0} = Z_H \cdot Z_E \cdot Z_z \cdot Z_\beta \cdot \sqrt{\frac{F_{Nt} \cdot (u + 1)}{d_1 \cdot b \cdot u}} = 466,81 \text{ N/mm}^2 \]
Linienbelastung ohne K_v:

\[w = \frac{F_{Nt} \cdot K_A}{b} = 156,2 \text{ N/mm} \]

Lastkorrekturfaktor:

\[VA = \text{WENN}(VZA="Geradverzahnung";1:2) = 2 \]
\[f_F = \text{TAB("Getriebe/Verzfakt";} f_F; \text{Bez}=VA; Q=Q; w=w) = 2,23 \]
\[K = \text{TAB("Getriebe/Verzfakt";} K; \text{Bez}=VA; Q=Q) = 46 \text{ s/m} \]

Zähneverhältnis

\[u = \frac{z_2}{z_1} = 4,368 \]

Dynamikfaktor:

\[K_v = 1 + f_F \cdot K \cdot z_1 \cdot v^* \sqrt{\frac{u^2}{1+u^2}} \cdot 10^{-5} = 1,105 \]

Linienbelastung:

\[w_t = K_v \cdot w = 172,60 \text{ N/mm} \]

Breitengrundfaktor:

\[K_B = \text{TAB("Beiwerte/Kbeta";} K_B; Q=Q; b \geq b) = 1,11 \]
\[f_w = \text{TAB("Beiwerte/Kfw";} f_w ; w_t = w_t) = 1,49 \]

Werkstoffpaarungsfaktor f_p:

\[f_p = 1,0 \text{ bei Paarung Stahl/Stahl} \]
\[f_p \approx 0,7 \text{ bei Paarung GGG/GGG} \]
\[f_p \approx 0,5 \text{ bei Paarung GG/GG} \]

Bei anderen Paarungen ist ein Mittelwert zu bilden.

\[f_p = 1,0 \]

Breitenfaktor:

Breitenfaktor Zahnfußtragfähigkeit

\[K_{FB} = 1 + (K_B - 1) \cdot f_w \cdot f_p = 1,16 \]

Breitenfaktor Grübchentragfähigkeit

\[K_{HB} = K_{FB}^{1,39} = 1,23 \]

Gesamtüberdeckung

\[\varepsilon_y = \text{WENN}(VZA="Geradverzahnung";} \varepsilon_y; \varepsilon_y + \varepsilon_B) = 2,27 \]

Eingriffssteifigkeit c_y:

\[c_y \approx 20 \text{ bei Stahl} \]
\[c_y \approx 18 \text{ bei GGG} \]
\[c_y \approx 14 \text{ bei GG} \]

Bei einer Paarung verschiedener Werkstoffe ist ein Mittelwert zu bilden.

\[c_y = 20,00 \text{ N/(mm*um)} \]

Eingriffssteifigkeit c_{pe}

\[c_{pe} = \text{TAB("Getriebe/TeilAb";} c_{pe}; Q=Q) = 25,00 \text{ um} \]

Einlaufbetrag:

\[y_p = \text{TAB("Getriebe/TeilAb";} y_p; Q=Q) = 4,00 \text{ um} \]

Stirnfaktor:

\[K_{Fa1} = \frac{\varepsilon_y \cdot \left(0,9 + \frac{0,4 \cdot c_y \cdot (f_{pe} \cdot y_p)}{w_t \cdot K_{FB}} \right)}{2} = 1,974 \]
\[K_{Fa2} = 0,9 + 0,4 \cdot \sqrt{2 \cdot (\varepsilon_y - 1) \cdot c_y \cdot (f_{pe} \cdot y_p)}{w_t \cdot K_{FB}} = 1,788 \]
\[K_{Fa3} = \text{WENN}(\varepsilon_y > 2 ; K_{Fa2}; K_{Fa1}) = 1,788 \]

Grenzbedingung für die Flankentragfähigkeit
\[
K_{H\alpha} = \frac{1}{2} = 1,309
\]

maßgebende Flankenpressung
\[
\sigma_H = \sigma_{H0} \cdot \sqrt{(K_v \cdot K_{H\alpha} \cdot K_{H\beta} \cdot K_A)} = 709,93 \text{ N/mm}^2
\]

Größenfaktor berücksichtigt den Einfluss der Zahngröße

Werkstoff und Behandlung:
- St: Baustahl und Stahlguss
- V: Vergütungsstahl vergütet
- GG: Gusseisen mit Lamellengraphit (Grauguss)
- GGG: Gusseisen mit Kugelgraphit
- GTS: schwarzer Temperguss
- Eh: Einsatzstahl einsatzgehärtet
- IF: Stahl oder Gusseisen mit Kugelgraphit induktiv- oder flammgehärtet
- NTV: Nitrier- oder Vergütungsstahl nitriert
- NV: Vergüttungs- oder Einsatzstahl nitrocarburiert

WSB_1 = GEW("Beiwerte/GRFk":WB;) = St
WSB_2 = GEW("Beiwerte/GRFk":WB;) = St

\[
Z_{x1} = \text{TAB("Beiwerte/GRFk":Fk;WB =WSB_1 ; FArt="ZX"; m_n=m_n)} = 1,00
\]
\[
Z_{x2} = \text{TAB("Beiwerte/GRFk":Fk;WB =WSB_2 ; FArt="ZX"; m_n=m_n)} = 1,00
\]

Lebensdauerfaktor \(Z_{NT} \) (nach DIN 3990). Bei Dauergetrieben ist \(Z_{NT} = 1 \)
- Lebensdauerfaktor Ritzel \(Z_{NT1} = 1,00 \)
- Lebensdauerfaktor Rad \(Z_{NT2} = 1,00 \)

Schmierfaktor nach (DIN 3990)
- Nennviskosität \(\nu_40 = 300 \text{ mm}^2/\text{s} \)
- \(\sigma_{H\text{lim}} = \text{MIN}(\sigma_{H\text{lim},1} ; \sigma_{H\text{lim},2}) = 370,0 \text{ N/mm}^2 \)

\[
C_{ZL1} = \frac{\sigma_{H\text{lim}}}{4375} + 0,6357\quad 850 \text{ N/mm}^2 \leq \sigma_{H\text{lim}} \leq 1200 \text{ N/mm}^2
\]

\[
C_{ZL2} = 0,83\quad \sigma_{H\text{lim}} < 850 \text{ N/mm}^2
\]

\[
C_{ZL3} = 0,91\quad \sigma_{H\text{lim}} > 1200 \text{ N/mm}^2
\]

\[
C_{ZL} = \text{WENN}(\sigma_{H\text{lim}} > 1200; 0,91; \text{WENN}(\sigma_{H\text{lim}} < 850; 0,83; C_{ZL1})) = 0,83
\]

Schmierstofffaktor \(Z_L \)
\[
Z_L = \frac{C_{ZL} + 4 \cdot (1 - C_{ZL})}{2} = 1,08
\]

Geschwindigkeitsfaktor \(Z_V \)
\[
C_{ZV} = C_{ZL} + 0,02 = 0,85
\]

\[
Z_V = \frac{2 \cdot (1 - C_{ZV})}{\sqrt{0,8 + \frac{32}{\nu}}} = 0,97
\]
Rauigkeitsfaktor Z_R

\[R_{Z100} = 0.5 \cdot (R_{Z1} + R_{Z2}) \cdot \frac{3}{\sqrt{100}} \cdot \frac{100}{a_v} = 2.29 \]

C_{ZR1} für $850 \text{ N/mm}^2 \leq \sigma_{Hlim} \leq 1200 \text{ N/mm}^2$
\[C_{ZR1} = 0.32 - 0.0002 \cdot \sigma_{Hlim} = 0.25 \]

C_{ZR2} für $\sigma_{Hlim} < 850 \text{ N/mm}^2$
\[C_{ZR2} = 0.15 \]

C_{ZR3} für $\sigma_{Hlim} > 1200 \text{ N/mm}^2$
\[C_{ZR3} = 0.08 \]

\[C_Z = \begin{cases} 0.32 - 0.0002 \cdot \sigma_{Hlim} & \text{für } 850 \text{ N/mm}^2 \leq \sigma_{Hlim} \leq 1200 \text{ N/mm}^2 \\ 0.15 & \text{für } \sigma_{Hlim} < 850 \text{ N/mm}^2 \\ 0.08 & \text{für } \sigma_{Hlim} > 1200 \text{ N/mm}^2 \end{cases} \]

Rauhigkeitsfaktor $Z_R = \left(\frac{3}{R_{Z100}} \right)^{C_Z} = 1.04$

$Z_W = 1$, gilt wenn beide Flanken ungehärtet oder gehärtet oder nitriert sind.

Werkstoffpaarungsfaktor $Z_W = 1.00$

Ritzel Sicherheitsfaktor
\[S_{H1} = \frac{\sigma_{Hlim,1} \cdot Z_{NT1} \cdot Z_L \cdot Z_V \cdot Z_R \cdot Z_W \cdot Z_{X1}}{\sigma_H} = 0.66 \]

Rad Sicherheitsfaktor
\[S_{H2} = \frac{\sigma_{Hlim,2} \cdot Z_{NT2} \cdot Z_L \cdot Z_V \cdot Z_R \cdot Z_W \cdot Z_{X2}}{\sigma_H} = 0.57 \]

erforderlicher Sicherheitsfaktor $S_{Herf} = 1.00$

Nachweis gegen Grübchenschäden des Ritzels/Rades

Ritzel: $S_{Herf}/S_{H1} = 1.52 \leq 1$

Rad: $S_{Herf}/S_{H2} = 1.75 \leq 1$
Mehrfachübersetzungen:

System:
Zähnezahl \(z_1 = 25 \text{ Zähne} \)
Zähnezahl \(z_2 = 50 \text{ Zähne} \)
Zähnezahl \(z_{21} = 40 \text{ Zähne} \)
Zähnezahl \(z_3 = 70 \text{ Zähne} \)
Zähnezahl \(z_{31} = 35 \text{ Zähne} \)
Zähnezahl \(z_4 = 115 \text{ Zähne} \)
Umdrehungen \(n_1 = 1150,0 \text{ 1/min} \)

Berechnung:
Übersetzung \(i_1 = \frac{z_2}{z_1} = 2,000 \)
Übersetzung \(i_2 = \frac{z_3}{z_{21}} = 1,750 \)
Übersetzung \(i_3 = \frac{z_4}{z_{31}} = 3,286 \)
Gesamtübersetzung \(i = i_1 * i_2 * i_3 = 11,50 \)
Umdrehungen \(n_e = \frac{n_1}{i} = 100,00 \text{ 1/min} \)
Verzahnungsmaßen der Null-Stirnräderpaare:

System:
- Modul \(m = 12,00 \text{ mm} \)
- Zähnezahl \(z_1 = 15 \)
- Übersetzung \(i = 5,067 \)
- Normverzahnung \(\alpha = 20^\circ \)
- \(c = 3,00 \text{ mm} \)

Ermittlung der Zähnezahl:
Bei Innenräderpaare ist \(z_2 \) negativ
\[
z_2 = i \cdot z_1 = 76
\]

Ermittlung der Teilkreisdurchmesser:
\[
d_1 = z_1 \cdot m = 180 \text{ mm}
d_2 = z_2 \cdot m = 912 \text{ mm}
\]

Ermittlung der Kopfkreisdurchmesser:
\[
a = m \cdot \frac{z_1 + z_2}{2} = 546,00 \text{ mm}
d_{a1} = m \cdot (z_1 + 2) = 204,00 \text{ mm}
d_{a2} = m \cdot (z_2 + 2) = 936,00 \text{ mm}
d_1 = m \cdot (z_1 - 2.5) = 150,00 \text{ mm}
d_2 = m \cdot (z_2 - 2.5) = 882,00 \text{ mm}
\]
Ermittlung der Grundkreisdurchmesser:
\[d_{b1} = z_1 \cdot m \cdot \cos(\alpha) = 169,14 \text{ mm} \]
\[d_{b2} = z_2 \cdot m \cdot \cos(\alpha) = 857,00 \text{ mm} \]

Ermittlung der Teilung \(p \) und die Eingriffsteilung \(p_e \):
\[p = \frac{d_1}{z_1} = 37,70 \text{ mm} \]
\[p_e = p \cdot \cos(\alpha) = 35,43 \text{ mm} \]

Ermittlung der Null-Achsenabstandes:
\[a_d = 0,5 \cdot m \cdot (z_1 + z_2) = 546,00 \text{ mm} \]

Ermittlung des Überdeckungsgrades:
\[g_\alpha = \frac{1}{2} \left(\sqrt{\frac{d_1}{z_1}}^2 \cdot \frac{z_2}{\text{abs}(z_2)} + \sqrt{\frac{d_2}{z_2}}^2 \cdot \frac{z_2}{\text{abs}(z_2)} \right) \cdot a_d \cdot \sin(\alpha) = 58,46 \text{ mm} \]
\[\varepsilon_a = \frac{g_\alpha}{p_e} = 1,65 \text{ mm} \]
Wälzleiten der Zahnflanken

System:
- Ritzel Zähnezahl $z_1 = 19$
- Rad Zähnezahl $z_2 = 83$
- Wälzkreisradius $r_{w1} = 36,00$ mm
- Eingriffswinkel $\alpha = 20,00 \, ^\circ$
- Abstand $b = 5$ mm

Berechnung:
- Zähnezahlverhältnis $u = \frac{z_2}{z_1} = 4,368$
- Wälzkreisradius $r_{w2} = \frac{z_2}{z_1} \cdot r_{w1} = 157$ mm
- Krümmungsradius $\rho_1 = r_{w1} \cdot \sin(\alpha) - b = 7,31$ mm
- Krümmungsradius $\rho_2 = r_{w2} \cdot \sin(\alpha) + b = 58,70$ mm
- spezifisches Gleiten Rad 1 $\xi_1 = 1 \cdot \frac{\rho_2}{u \cdot \rho_1} = -0,838$
- spezifisches Gleiten Rad 2 $\xi_1 = 1 \cdot \frac{u \cdot \rho_1}{\rho_2} = 0,456$
Zahnfußtragfähigkeit der Kegelräder

System:

Faktor zur Berücksichtigung der Wechselbeanspruchung:
Liegt eine Wechselbeanspruchung vor?
Abfrage = GEW("Getriebe/Abf";Ant;) = ja
f = WENN(Abfrage ="ja";0,7;1) = 0,70

Verzahnungsart:
VA = GEW("Getriebe/Abf";VA;) = Schrägverzahnung
Zähnezahl Ritzel \(z_1 = 24 \)
Zähnezahl Rad \(z_2 = 33 \)
Zahnbreite \(b = 20 \) mm
Bei Geradverzahnung ist der Schrägungswinkel \(\beta_m = 0 \)
mittlerer Schrägungswinkel \(\beta_m = \)
\(\beta_m = \) WENN(VA ="Geradverzahnung";0;\beta_m) = 30,0 °
Achsenwinkel \(\Sigma = 90,00 \) °

Zähnezahlverhältnis \(u = \frac{z_2}{z_1} = 1,38 \)

mittlerer Teilkreisdurchmesser Ritzel \(d_{m1} = 66,0 \) mm
mittlerer Teilkreisdurchmesser Rad \(d_{m2} = 93,0 \) mm
Umfangsgeschwindigkeit \(v = 3,59 \) m/s
Nennleistung \(P_{N_b} = 11200 \) W
Anwendungsfaktor \(K_A = 1,25 \)

Teilkegelwinkel
\(\delta_1 = \arctan\left(\frac{\sin(\Sigma)}{\cos(\Sigma) + u}\right) = 35,93 \) °

\(\delta_2 = \Sigma - \delta_1 = 54,07 \) °

Teilkegellänge für die Bestimmung von \(m_{nm} \)
\(R = d_{m1} / (2 \sin(\delta_1)) = 56,24 \) mm

Äußerer Modul \(m_e = 3 \) mm
\(m_{nm} \) für Schrägverzahnung
mittlerer Normalmodul \(m_{nm} = 3 \) mm
\(m_{n} \) für Geradverzahnung

mittlerer Modul \(m_{m} = m_e \cdot \left(1 - \frac{0.5 \cdot b}{R}\right) = 2,47 \) mm
maßgebender Modul
\[m = \begin{cases} WENN(VA="Geradverzahnung";m_m; m_{nm}) = 3,00 \text{ mm} \end{cases} \]

virtuelle Zähnezahl Ritzel
\[z_{v1} = \frac{z_1}{\cos(\delta_1)} = 29,6 \]

Ersatzzähnezahl Ritzel ist bei geradverzahnten Kegelrädern 0 zu setzen
\[z_{vn1} = \frac{z_{v1}}{(\cos(\beta_m))^3} = 45,6 \]

virtuelle Zähnezahl Rad
\[z_{v2} = \frac{z_2}{\cos(\delta_2)} = 56,2 \]

Ersatzzähnezahl Rad ist bei geradverzahnten Kegelrädern 0 zu setzen
\[z_{vn2} = \frac{z_{v2}}{(\cos(\beta_m))^3} = 86,5 \]

Überdeckungsgrad \(\epsilon_\alpha = 1,38 \)
Sprungüberdeckung. Bei Geradverzahnung \(\epsilon_\beta = 0 \)
\[\epsilon_\beta = WENN(VA="Geradverzahnung"; 0; \frac{b \cdot \sin(\beta_m)}{m_{nm} \cdot \pi}) = 1,06 \]

Verzahnungsqualität:
\[Q = TAB("Getriebe/VZAM"; Q; v^3; v) = 8,0 \]

Werkstoff Ritzel
\[RW = GEW("Getriebe/Zahnrad"; Bez;) = \text{E360} \]

Werkstoff Rad
\[RAW = GEW("Getriebe/Zahnrad"; Bez;) = \text{E335} \]

\[\sigma_{FE1} = TAB("Getriebe/Zahnrad"; \sigma_{FE}; Bez=RW) = 410,0 \text{ N/mm}^2 \]
\[\sigma_{FE2} = TAB("Getriebe/Zahnrad"; \sigma_{FE}; Bez=RAW) = 350,0 \text{ N/mm}^2 \]

Berechnung:
Nennumfangskraft am Teilkreis:
\[F_{Nit} = \frac{P_{Nb}}{v} = 3119,8 \text{ N} \]
Linienbelastung ohne \(K_v \):
\[w = \frac{F_{Nit} \cdot K_A}{b} = 195,0 \text{ N/mm} \]
Lastkorrekturfaktor:
\[VA = WENN(VA="Geradverzahnung";1;2) = 2 \]
\[f_F = TAB("Getriebe/Verzfakt"; f_F; Bez=VA; Q=Q; w=w) = 1,73 \]
Verzahnungsfaktor
\[K = TAB("Getriebe/Verzfakt"; K; Bez=VA; Q=Q) = 68 \text{ s/m} \]
Zähneverhältnis \(u = \frac{z_2}{z_1} = 1,375 \)
Dynamikfaktor:

\[K_v = 1 + f_F \cdot K \cdot \gamma \cdot \frac{v^2}{u^2} \cdot 10^{-5} \]

= 1,08

Ersatzzähnezahl bei Schrägverzahnung und virtuelle Zähnezahl bei Geradverzahnung

Ritzel \(z_{n1} = \) WENN(VA=1; \(z_{v1} \); \(z_{vm1} \)) = 45,60
Rad \(z_{n2} = \) WENN(VA=1; \(z_{v2} \); \(z_{vm2} \)) = 86,50

\(x_1 = \) GEW("Beiwerte/KopfF"; \(x; \)) = 0,1
\(x_2 = \) GEW("Beiwerte/KopfF"; \(x; \)) = 0,0

Kopffaktor Ritzel
\(Y_{FS1} = \) TAB("Beiwerte/KopfF"; \(Y_{FS}; x=x_1; z_n=z_{n1} \)) = 4,280

Kopffaktor Rad
\(Y_{FS2} = \) TAB("Beiwerte/KopfF"; \(Y_{FS}; x=x_2; z_n=z_{n2} \)) = 4,277

Überdeckungsfaktor \(Y_\varepsilon = 1/\varepsilon_\alpha \)

= 0,725

Schrägenfaktor
\[Y_\beta = \) WENN(\(\beta_m=0:1; \) WENN(\(\varepsilon_\beta>1; 1 - 1 \cdot \beta_m \cdot 120; \varepsilon_\beta \cdot 120 \))) = 0,750

Lagerung der Kegelräder

Lag = GEW("Beiwerte/STBRF";Lg;) = beidseitig gelagertes Rad u. fliegend gelagertes Ritzel

Stirn-Breitenfaktor \(K_{u\beta} \)

\[K_{u\beta} = \) TAB("Beiwerte/STBRF"; \(K_{u\beta}; Lg=Lag \)) = 2,2

Zahnfußnennspannung Ritzel:
\[\sigma_{F01} = \frac{F_N}{(b \cdot m)} \cdot Y_{FS1} \cdot Y_\varepsilon \cdot Y_\beta \]

= 121,01 N/mm²

Zahnfußspannung Ritzel:
\[\sigma_{F1} = \sigma_{F01} \cdot K_A \cdot K_v \cdot K_{u\beta} \]

= 359,40 N/mm²

Zahnfußnennspannung Rad:
\[\sigma_{F02} = \) WENN(\(\sigma_{FE2} = 0; \) WENN(\(F_N/(b \cdot m) \cdot Y_{FS2} \cdot Y_\varepsilon \cdot Y_\beta \))) = 120,92 N/mm²

Zahnfußspannung Rad:
\[\sigma_{F2} = \sigma_{F02} \cdot K_A \cdot K_v \cdot K_{u\beta} \]

= 359,13 N/mm²

Bei Dauergetrieben ist der Lebensdauerfaktor \(Y_{NT} = 1 \)

Lebensdauerfaktor Ritzel \(Y_{NT1} = 1,00 \)
Lebensdauerfaktor Rad \(Y_{NT2} = 1,00 \)

Größenfaktor:
Ritzel \(Y_X1 = 1,00 \)
Rad \(Y_X2 = 1,00 \)

Größenfaktor berücksichtigt den Einfluss der Zahngröße

Werkstoff und Behandlung:
Ritzel
\(WSB_1 = \) GEW("Beiwerte/GRFk";WB;) = St

Rad
\(WSB_2 = \) GEW("Beiwerte/GRFk";WB;) = St

\(Y_{X1} = \) TAB("Beiwerte/GRFk";Fk; WB =WSB1 ;FArt="YX";m_n=m) = 1,00
\(Y_{X2} = \) TAB("Beiwerte/GRFk";Fk; WB =WSB2 ;FArt="YX"; m_n=m ;) = 1,00
Maschinenbaubibliothek | Ordner : Getriebe

Sicherheit für Ritzel:
\[S_{F1} = f \cdot \sigma_{FE1} \cdot Y_{NT1} \cdot Y_{X1} / \sigma_{F1} = 0.80 \]

Sicherheit für Rad:
\[S_{F2} = f \cdot \sigma_{FE2} \cdot Y_{NT2} \cdot Y_{X2} / \sigma_{F2} = 0.68 \]

erforderlicher Sicherheitsfaktor \(S_{Ferf} = 1.10 \)

Nachweis gegen Zahndauerbruch des Ritzels/Rades

Ritzel: \(S_{Ferf} / S_{F1} = 1.38 \leq 1 \)
Rad: \(S_{Ferf} / S_{F2} = 1.62 \leq 1 \)
Zahnfußtragfähigkeit der Stirnräder

System:
Faktor zur Berücksichtigung der Wechselbeanspruchung:

Lieg e i n e We c h s e l b e a n s p r u c h u n g v o r?

Abfrage = GEW("Getriebe/Abfür;Ant;") = nein
f = WENN(Abfrage ="ja";0,7;1) = 1,00
Zähnezahl Ritzel z₁ = 19,0
Zähnezahl Rad z₂ = 78,0
Modul m = 4,0 mm
Zahnbreite b₁ = 40,0 mm
Eingriffswinkel αₙ = 20,00 °
Schrägungswinkel β = 23,6 °
Stirneingriffswinkel αₜ = \(\frac{\tan(\alpha_n)}{\cos(\beta)} \) = 21,7 °
Schrägungswinkel βₜ am Grundzylinder
Schrägungswinkel βₜ = \(\frac{\sin(\alpha_n)}{\sin(\alpha_t)} \) = 22,3 °
Ersatzzähnezahl zₙ₁ = \(\frac{z_1}{(\cos(\beta_{t}))^2 \cdot \cos(\beta)} \) = 24,2
Ersatzzähnezahl zₙ₂ = \(\frac{z_2}{(\cos(\beta_{t}))^2 \cdot \cos(\beta)} \) = 99,4
Überdeckungsgrad εₜ = 1,32
Welche Verzahnungsart liegt vor?

\[\text{Abf}_2 = \text{GEW}("\text{Getriebe/Abf"}; VA;) = \text{Schrägverzahnung} \]

\[\text{VA} = \text{WENN} (\text{Abf}_2 = "\text{Geradverzahnung"}; 1; 2) = 2 \]

Sprungüberdeckung (bei Geradverzahnung ist \(\varepsilon_{_p} = 0 \))

\[\varepsilon_{_p} = 0,95 \]

Teilkreisdurchmesser \(d_2 = 353,5 \text{ mm} \)

Rauhtiefe in den Zahnfußrundungen:

\[R_z = 20,0 \mu \text{m} \]

Umfangsgeschwindigkeit \(v = 5,55 \text{ m/s} \)

Nennleistung \(P_{\text{nb}} = 25000,0 \text{ W} \)

Anwendungsfaktor \(K_A = 1,3 \)

Verzahnungsqualität:

\[Q = \text{TAB} ("\text{Getriebe/VZAM"}; Q; v^3; v^3) = 7,0 \]

Werkstoff Ritzel

\[\text{RW} = \text{GEW} ("\text{Getriebe/Zahnrad"}; \text{Bez;};) = \text{E335} \]

Werkstoff Rad

\[\text{RAW} = \text{GEW} ("\text{Getriebe/Zahnrad"}; \text{Bez;};) = \text{E295} \]

\[\sigma_{Fe1} = \text{TAB} ("\text{Getriebe/Zahnrad"}; \sigma_{Fe}; \text{Bez=}\text{RW}) = 350,0 \text{ N/mm}^2 \]

\[\sigma_{Fe2} = \text{TAB} ("\text{Getriebe/Zahnrad"}; \sigma_{Fe}; \text{Bez=}\text{RAW}) = 320,0 \text{ N/mm}^2 \]

Berechnung:

Nennumfangskraft am Teilkreis:

\[F_{\text{Nt}} = \frac{P_{\text{nb}}}{v} = 4504,5 \]

Linienbelastung ohne \(K_v \):

\[w = F_{\text{Nt}} \times K_A / b = 146,4 \text{ N/mm} \]

Lastkorrekturfaktor:

\[f_F = \text{TAB} ("\text{Getriebe/Verzfakt"}; f_F; \text{Bez=}\text{VA}; Q=Q; w=w) = 2,37 \]

\[K = \text{TAB} ("\text{Getriebe/Verzfakt"}; K; \text{Bez=}\text{VA}; Q=Q) = 46 \text{ s/m} \]

Zähneverhältnis \(u = z_2 / z_1 \)

\[z_2 / z_1 = 4,11 \]

Dynamikfaktor:

\[K_v = 1 + f_F \times K \times z_1 \times v \times \sqrt{\frac{u^2}{u^2 + 10^{-5}}} = 1,11 \]

Linienbelastung:

\[w_i = K_v \times w = 162,50 \text{ N/mm} \]

Breitengrundfaktor:

\[K_b = \text{TAB} ("\text{Beiwerte/Kbeta"}; K_b; Q=Q; b=b) = 1,11 \]

Korrekturfaktor für die Linienbelastung:

\[f_w = \text{TAB} ("\text{Beiwerte/Kfw"}; f_w; w_i = w_i) = 1,51 \]
Werkstoffpaarungsfaktor:
fp = 1 bei Paarung St/St
fp ~ 0,7 bei Paarung GGG/GGG
fp ~ 0,5 bei Paarung GG/GG
Bei anderen Paarungen ist ein Mittelwert zu bilden.
f_p = 1

Breitenfaktor:
K_{FB} = 1 + \left(K_b - 1 \right) \cdot f_w \cdot f_p = 1,17

Gesamtüberdeckung:
\varepsilon_y = \varepsilon_\alpha + \varepsilon_\beta = 2,27

Eingriffssteifigkeit:
~20 bei Stahl
~18 bei GGG
~14 bei GG
Bei einer Paarung verschiedener Werkstoffe ist ein Mittelwert zu bilden.
Eingriffssteifigkeit c_y = 20,00 N/(mm*µm)

zulässige Eingriffsteilungsabweichung:
f_{pe} = \text{TAB("Getriebe/TeilAb"; } f_{pe}; Q=Q) = 25,00 \, \mu m

Einlaufbetrag:
y_{p} = \text{TAB("Getriebe/TeilAb"; } y_{p}; Q=Q) = 4,00 \, \mu m

Stirnfaktor:
K_{Fa1} = \frac{e_{\gamma} \cdot 0,9 \cdot c_{y} \cdot f_{pe} \cdot y_{p}}{w_{t} \cdot K_{FB}} = 2,024

K_{Fa2} = 0,9 + 0,4 \cdot 2 \cdot (\varepsilon_{y} - 1) \cdot c_{y} \cdot f_{pe} \cdot y_{p} \cdot \varepsilon_{y} \cdot w_{t} \cdot K_{FB} = 1,835

K_{Fas} = \text{WENN} (\varepsilon_{y} > 2 ; K_{Fa2} ; K_{Fa1}) = 1,835

Überdeckungsfaktor:
y_z = 0,25 + 0,75 / \varepsilon_\alpha = 0,818

Stirnfaktor aus der Grenzbedingung:
für die Zahnfußtragfähigkeit:
K_{Fa2} = 1 / y_z = 1,222

Gültiger Stirnfaktor:
K_{Fa} = \text{MIN}(K_{Fas} ; K_{Fa2}) = 1,222

Ersatzzähnezahl bei Schrägverzahnung und virtuelle Zähnezahl bei Geradverzahnung

Ritzel \ z_{n1} = \text{WENN}(VA=1; z_{1}; z_{n1}) = 24,20
Rad \ z_{n2} = \text{WENN}(VA=1; z_{0}; z_{n2}) = 99,40
x_{1} = \text{GEW("Beiwerte/KopfF"; } x_{i}) = 0,7
x_{2} = \text{GEW("Beiwerte/KopfF"; } x_{i}) = 0,3

Kopffaktor Ritzel
Y_{FS1} = \text{TAB("Beiwerte/KopfF"; } Y_{FS}; x=x_{1}; z_{n}=z_{n1}) = 4,28

Kopffaktor Rad

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Y_{FS2} = TAB(“Beiwerte/KopfF”; Y_{FS}; x=x_2; z_n=z_n2) = 4,38

Schrägenfaktor:
Y_\beta = \frac{1 - \varepsilon_\beta \cdot \frac{\beta}{120}}{Y_{FS}} = 0,813

Zahnfußnennspannung Ritzel:
\sigma_{F01} = \frac{F_N}{b \cdot m} \cdot Y_{FS1} \cdot Y_z \cdot Y_\beta = 80,13 \text{ N/mm}^2

Zahnfußspannung Ritzel:
\sigma_{F1} = \sigma_{F01} \cdot K_A \cdot K_v \cdot K_{F_{\beta}} \cdot K_{F_{\alpha}} = 165,32 \text{ N/mm}^2

Zahnfußnennspannung Rad:
\sigma_{F02} = \frac{Y_{FS2}}{Y_{FS1}} \cdot \sigma_{F01} = 82,00 \text{ N/mm}^2

Zahnfußspannung Rad:
\sigma_{F2} = \sigma_{F02} \cdot K_A \cdot K_v \cdot K_{F_{\beta}} \cdot K_{F_{\alpha}} = 169,18 \text{ N/mm}^2

Lebensdauerfaktoren nach (DIN 3990) für Stahl bei einem Lastspiel von N_L = 10^5
Für Dauergetrieben ist der Lebensdauerfaktor Y_{NT} = 1:
Lebensdauerfaktor Ritzel Y_{NT1} = 1,75
Lebensdauerfaktor Rad Y_{NT2} = 1,75
Relative Stützziffer Y_\delta = 1,00

Relativer Oberflächenfaktor:
für Baustahl und Stahlguss:
Y_R = \frac{5,306 - 4,203 \cdot (R_z + 1)^{0,01}}{0,973}
für Gusseisen mit Lamellengraphit (Grauguss), Gusseisen mit Kugelgraphit (GGG-40 und 60) und Vergütungs- und Nitrierstahl (nitriert oder nitrocarburiert):
Y_R = \frac{4,299 - 3,259 \cdot (R_z + 1)^{0,005}}{0,990}
für Vergütungsstahl und Gusseisen mit Kugelgraphit (GGG -80), Einsatzstahl und randschichtgehärteter Stahl mit gehärtetem Zahngrund:
Y_R = \frac{1,674 - 0,529 \cdot (R_z + 1)^{0,1}}{0,957}

gewählt Y_{R1} = 0,973
gewählt Y_{R2} = 0,973

Größenfaktor:
Ritzel Y_{X1} = 1,00
Rad Y_{X2} = 1,00

Sicherheit für Ritzel:
S_{F1} = \frac{I \cdot \sigma_{FE1} \cdot Y_{NT1} \cdot Y_\delta \cdot Y_{R1} \cdot Y_{X1}}{\sigma_{F1}} = 3,60

Sicherheit für Rad:
S_{F1} = \frac{I \cdot \sigma_{FE2} \cdot Y_{NT2} \cdot Y_\delta \cdot Y_{R2} \cdot Y_{X2}}{\sigma_{F2}} = 3,22
Kraft und Momentenberechnung der geradverzahnten Kegelräder

System:
- Nennleistung Abtrieb \(P_{N_b} = 80,00 \text{ kW} \)
- Abtriebsdrehzahl \(n_b = 873,0 \text{ min}^{-1} \)
- Wirkungsgrad \(\eta = 0,96 \)
- mittlerer Teilkreisdurchmesser Ritzel \(d_{m1} = 87,4 \)
- mittlerer Teilkreisdurchmesser Rad \(d_{m2} = 174,8 \)
- Eingriffswinkel \(\alpha = 20 \, ^\circ \)
- Ritzel Teilkegelwinkel \(\delta_1 = 28,33 \, ^\circ \)
- Rad Teilkegelwinkel \(\delta_2 = 71,67 \, ^\circ \)

Arbeitsweise der Maschinen für die Ermittlung des Anwendungsfaktors \(K_A \):
- getriebene Maschine \(GM = \text{GEW}(\text{"Beiwerte/AnwF"}; GM; AM) \) = gleichmäßig
- Antriebsmaschine \(AM = \text{GEW}(\text{"Beiwerte/AnwF"}; AM) \) = gleichmäßig
- Anwendungsfaktor \(K_A = \text{GEW}(\text{"Beiwerte/AnwF"}; K_A ; GM = GM; AM = AM) = 1,00 \)

Berechnung:
- Achsenwinkel \(\Sigma = \delta_2 + \delta_1 = 100 \, ^\circ \)
- Abtriebsleistung \(P_b = P_{N_b} \times K_A = 80,000 \text{ kW} \)
- Abtriebsdrehzahl \(n_b = \frac{P_b}{\eta} = 83,333 \text{ kW} \)
- Antriebsdrehzahl \(n_a = \frac{n_b \times d_{m2}}{d_{m1}} = 1746,0 \text{ min}^{-1} \)

Umfangsgeschwindigkeit
- \(v_m = \frac{d_{m2} \times \pi \times n_b}{1000} = 7,990 \text{ m/s} \)
Zahnkräfte

Tangentialkraft der Räder $F_{t1} = F_{t2}$

$$F_{t1} = \frac{P_b}{u_m} \times 1000 = 10013 \text{ N}$$

Radialkraft Ritzel F_{r1}

$$F_{r1} = F_{t1} \times \tan(\alpha) \times \cos(\delta_1) = 3208 \text{ N}$$

Radialkraft Rad F_{r2}

$$F_{r2} = F_{t1} \times \tan(\alpha) \times \cos(\delta_2) = 1146 \text{ N}$$

Axialkraft Ritzel F_{a1}

$$F_{a1} = F_{t1} \times \tan(\alpha) \times \sin(\delta_1) = 1729 \text{ N}$$

Axialkraft Rad F_{a2}

$$F_{a2} = F_{t1} \times \tan(\alpha) \times \sin(\delta_2) = 3460 \text{ N}$$

Abtriebsdrehmoment M_b

$$M_b = \frac{P_b \times 60}{2 \times \pi \times n_b} \times 1000 = 875,08 \text{ Nm}$$

Antriebsdrehmoment M_a

$$M_a = \frac{M_b \times d_m1}{\eta \times d_m2} = 455,77 \text{ Nm}$$

Antriebsnennendrehmoment M_{N1}

$$M_{N1} = \frac{M_a}{K_A} = 455,77 \text{ Nm}$$
Kraft und Momentenberechnung der schrägverzahnten Kegelräder

System:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennleistung Abtrieb P_{Nb}</td>
<td>6,900 kW</td>
</tr>
<tr>
<td>Abtriebsdrehzahl n_b</td>
<td>188,0 min⁻¹</td>
</tr>
<tr>
<td>Wirkungsgrad η</td>
<td>1,00</td>
</tr>
<tr>
<td>mittlerer Teilkreisdurchmesser Ritzel d_{m1}</td>
<td>55,0</td>
</tr>
<tr>
<td>mittlerer Teilkreisdurchmesser Rad d_{m2}</td>
<td>278,0</td>
</tr>
<tr>
<td>Eingriffswinkel α_n</td>
<td>20 °</td>
</tr>
<tr>
<td>Ritzel Teilkegelwinkel δ_1</td>
<td>10,80 °</td>
</tr>
<tr>
<td>Rad Teilkegelwinkel δ_2</td>
<td>109,20 °</td>
</tr>
<tr>
<td>mittlerer Schrägungswinkel β_m</td>
<td>22 °</td>
</tr>
</tbody>
</table>

Steigung des treibenden Rades 1

<table>
<thead>
<tr>
<th>Richtung</th>
<th>Rechtssteigend</th>
</tr>
</thead>
<tbody>
<tr>
<td>SR</td>
<td>2</td>
</tr>
</tbody>
</table>

Arbeitsweise (getriebene Maschine)

<table>
<thead>
<tr>
<th>GMa</th>
<th>Gleichmäßig</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMa</td>
<td>Gleichmäßig</td>
</tr>
</tbody>
</table>

Anwendungsfaktor K_A

$K_A = \frac{\text{TAB}(\text{"Beiwerte/AnwF"};KA ;GM=GMa;AM=AMa)}{1,00}$
Berechnung:

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formel</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Achsenwinkel (\Sigma)</td>
<td>(\delta_2 + \delta_1)</td>
<td>120 °</td>
</tr>
<tr>
<td>Abtriebsleistung (P_b)</td>
<td>(P_{Nb} \cdot K_A)</td>
<td>6,900 kW</td>
</tr>
<tr>
<td>Antriebsdrehzahl (P_a)</td>
<td>(P_b / \eta)</td>
<td>6,900 kW</td>
</tr>
<tr>
<td>Antriebsdrehzahl (n_b)</td>
<td>(n_b \cdot d_{m2} / d_{m1})</td>
<td>950,3 min⁻¹</td>
</tr>
</tbody>
</table>

Umfangsgeschwindigkeit

\[
\nu_m = \frac{d_{m2} \cdot \pi \cdot n_b}{1000 \cdot 60} = 2,737 \text{ m/s}
\]

Zahnkräfte

Tangentialkraft der Räder \(F_{11} = F_{12} \)

\[
F_{11} = \frac{P_b \cdot 1000}{\nu_m} = 2521 \text{ N}
\]

\[
F_{12} = F_{11} = 2521 \text{ N}
\]

Faktor für den Steigungssinn \(f_1 = \text{WENN} (SR=1;1;-1) \) = -1

Axialkraft des treibenden Rades 1

\[
F_{a1} = F_{11} \left(\frac{\sin (\delta_1)}{\cos (\beta_m)} + \frac{\tan (\beta_m) \cdot \cos (\delta_1) \cdot f_1}{\cos (\beta_m)} \right) = -815 \text{ N}
\]

Axialkraft des getriebenen Rades 2

\[
F_{a2} = F_{12} \left(\frac{\sin (\delta_2)}{\cos (\beta_m)} \cdot \frac{\tan (\beta_m) \cdot \cos (\delta_2) \cdot f_1}{\cos (\beta_m)} \right) = 600 \text{ N}
\]

Radialkraft des treibenden Rades 1

\[
F_{r1} = F_{11} \left(\frac{\cos (\delta_1)}{\cos (\beta_m)} \cdot \frac{\tan (\beta_m) \cdot \sin (\delta_1) \cdot f_1}{\cos (\beta_m)} \right) = 1163 \text{ N}
\]

Radialkraft des getriebenen Rades 2

\[
F_{r2} = F_{12} \left(\frac{\cos (\delta_2)}{\cos (\beta_m)} + \frac{\tan (\beta_m) \cdot \sin (\delta_2) \cdot f_1}{\cos (\beta_m)} \right) = -1287 \text{ N}
\]

Abtriebsdrehmoment

\[
M_b = \frac{P_b \cdot 60}{2 \cdot \pi \cdot n_b} = 350,48 \text{ Nm}
\]

Antriebsdrehmoment

\[
M_a = \frac{M_b \cdot d_{m1}}{\eta \cdot d_{m2}} = 69,34 \text{ Nm}
\]

Antriebsnenndrehmoment

\[
M_{N1} = \frac{M_a}{K_A} = 69,34 \text{ Nm}
\]
Power Grip- HTD-Zahnriemenberechnung

System: Antrieb mit Power Grip HTD-Zahnriemen
Nennleistung $P = 30,00 \text{ kW}$
Große Scheibe $S_G = \text{GEW("Hülltriebe/Abfrage";S_G)} = \text{ungezahnt}$
Treibende Scheibe $T_S = \text{GEW("Hülltriebe/Abfrage";TrS;)} = \text{kl. Scheibe}$

$K_1 = \text{WENN}(T_S="\text{kl. Scheibe}";1;2) = 1$

Drehzahl der treibenden Scheibe $n_a = 1450 \text{ min}^{-1}$
Drehzahl der getriebenen Scheibe $n_b = 453 \text{ min}^{-1}$

Aus den Drehzahlen errechnete Übersetzung $i = n_a/n_b = 3,20$

vorläufiger Achsabstand gew. $e_v = 800 \text{ mm}$

Scheibengeometrie und Riemengröße:

$[P/n_a] \varepsilon = P/n_a = 0,0207 \text{ kW min}$

Teilung $p = \text{WENN}(\varepsilon <0,02;8;14) = 14 \text{ mm}$
Typ $= \text{TAB("Hülltriebe/PGAbm";} ; \text{Typ;} p=p) = 14 \text{ M}$

Modul der Verzahnung $m = \text{TAB("Hülltriebe/PGAbm";} ; m; \text{Typ=} \text{Typ}) = 4,4563 \text{ mm}$
Abstand vom Zahnhauptkreis Scheibe bis zur Achse Zuglitze $u = \text{TAB("Hülltriebe/PGAbm";} ; u; \text{Typ=} \text{Typ}) = 1,40 \text{ mm}$
Zahnhöhe $h = \text{TAB("Hülltriebe/PGAbm";} ; h; \text{Typ=} \text{Typ}) = 6,40 \text{ mm}$

Mindestzähnezahl $z_{\text{min}} = \text{TAB("Hülltriebe/PGAbm";} ; z_{\text{min}}; \text{Typ=} \text{Typ}) = 28$

Die Leistungsfähigkeit der Riemenden wird am besten bei großen Zähnezahlen ausgenutzt. z_k sollte ≥ 30 gewählt werden.
gewählte Zähnezahl der kleinen Scheibe $\text{gew. } z_k = 30$
errechnete Zähnezahl der große Scheibe

\[z_{g,err} = \begin{cases} WENN(K_1=1;z_k^*;i;WENN(K_1=2;z_k/z_g;0)) & = 96,00 \\ \end{cases} \]

Auch bei Flachscheiben ist eine virtuelle Zähnezahl zu wählen, um anschließend den Durchmesser \(d_g \) zu berechnen.

gewählte Zähnezahl der großen Scheibe.

\[\text{gew. } z_g = 96 \]

endgültige Übersetzung

\[i = WENN(K_1=1;z_g/z_k;WENN(K_1=2;z_k/z_g;0)) = 3,20 \]

endgültige Drehzahl der getriebenen Scheibe

\[n_b = n_a/i = 453,13 \text{ min}^{-1} \]

Teilkreisdurchmesser der kl. Scheibe

\[d_k = m^*z_k = 133,69 \text{ mm} \]

Teilkreisdurchmesser der gr. Scheibe

\[d_g = m^*z_g = 427,80 \text{ mm} \]

Kopfkreisdurchmesser der kl. Scheibe

\[d_{ek} = d_k - 2^*u = 130,89 \text{ mm} \]

Kopfkreisdurchmesser der gr. Scheibe (Flachscheibe)

\[d_{eg,Fl} = d_g - 2^*(u + h) = 412,20 \text{ mm} \]

Kopfkreisdurchmesser der gr. Scheibe (verzahnte Scheibe)

\[d_{eg,verz} = d_g - 2^*u = 425,00 \text{ mm} \]

Kopfkreisdurchmesser der großen Scheibe

\[d_{eg} = WENN(SG="ungezahnt";d_{eg,Fl};d_{eg,verz}) = 412,20 \text{ mm} \]

Anzahl der Riemenzähne, Riemenlänge:

vorläufiger Trumneigungswinkel

\[\alpha_v[Grad] = \arcsin\left(\frac{d_g - d_k}{2 \times e_v}\right) = 10,59 \degree \]

vorläufiger Trumneigungswinkel

\[\alpha_v[Rad] = \frac{\alpha_v[Grad]}{180} \pi = 0,185 \text{ rad} \]

Umschlingungswinkel kl. Scheibe

\[\beta_v[Grad] = 180-2^*\alpha_v[Grad] = 158,82 \degree \]

Umschlingungswinkel kl. Scheibe

\[\beta_v[Rad] = \beta_v[Grad] \times \frac{\pi}{180} = 2,772 \text{ rad} \]

vorläufige Wirktlänge des Zahnriemens

\[L_v = 2 \times e_v \times \cos(\alpha_v[Grad]) + \frac{\pi}{2} \times (d_k + d_g) + \alpha_v[Rad] \times (d_g - d_k) = 2509,14 \text{ mm} \]

Anzahl der Riemenzähne

\[X_{err} = \frac{L_v}{p} = 179,2 \]

Anzahl der Riemenzähne

\[\text{gew. } X = \text{GEW("Hülltriebe/PGX";X;X>X_{err};Typ=Typ)} = 185 \]
Wirklänge Zahnriemen \(L = X \times p \times \frac{\pi}{8} (d_k + d_g) = 2590,0 \text{ mm} \)

Kennwert \(f_1 = \frac{X \times p \times \frac{\pi}{8} (d_k + d_g)}{4} = 427,00 \text{ mm} \)

Kennwert \(f_2 = \frac{(d_g - d_k)^2}{8} = 10812,59 \text{ mm}^2 \)

Achsabstand \(e = f_1 + \sqrt{f_1^2 - f_2} = 841,15 \text{ mm} \)

Trumneigungswinkel
\[
\alpha_{[\text{Grad}]} = \arcsin \left(\frac{d_g - d_k}{2 \times e} \right) = 10,07 ^{\circ}
\]

Trumneigungswinkel
\[
\alpha_{[\text{Rad}]} = \alpha_{[\text{Grad}]} \times \frac{\pi}{180} = 0,1758 \text{ rad}
\]

Umschlingungswinkel kleine Scheibe
\[
\beta_{[\text{Grad}]} = 180 - 2 \times \alpha_{[\text{Grad}]} = 159,86 ^{\circ}
\]

Umschlingungswinkel kleine Scheibe
\[
\beta_{[\text{Rad}]} = \beta_{[\text{Grad}]} \times \frac{\pi}{180} = 2,79 \text{ rad}
\]

Eingriffzähnezahl
\[
z_{e,v} = \frac{z_k \times \beta_{[\text{Grad}]} }{360} = 13,32
\]

Die Eingriffzähnezahl \(z_{e,v} \) ist auf eine ganze Zahl nach unten zu runden und \(z_e \) darf bei der Berechnung der Antriebe nicht größer als 15 sein.

Eingriffzähnezahl
\[
z_e = \left(z_{e,v} - 0,5 \right) = 13
\]

Kontrolle
\[
z_e/15 = 0,87 \leq 1
\]

Ermittlung des Belastungsfaktors für Zahnriemen \(C_B \)

Gewerk \(Ge = \text{GEW("Hülltriebe/BF_ZR";Ge;)} = \text{Werkzeugmaschinen} \)

Maschinentyp \(M_{\text{Typ}} = \text{GEW("Hülltriebe/BF_ZR";Ma;Ge=Ge)} = \text{Bohr- u. Schleifmaschinen} \)

Motorengruppe
\[
A = \text{Elektromotoren mit niedrigem Anlaufmoment (bis 1,5 * Nennmoment)}
\]
\[
B = \text{Wechsel- und Drehmotoren mit normalem Anlaufmoment (1,5 - 2,5 * Nennmoment)}
\]
\[
C = \text{Wechsel- und Drehmotoren mit hohem Anlaufmoment (über 2,5 * Nennmoment)}
\]

Motorenguppe
\[
M_G = \text{GEW("Hülltriebe/BF_ZR";MGr;)}
\]

Betriebsdauergruppen
\[
B_G = \text{GEW("Hülltriebe/BF_ZR";BGr;)} = \text{bis 10 Std/Tag}
\]

Belastungsfaktoren für Zahnriemen \(C_B \) nach Motoren- und Betriebsdauergruppen
\[
C_B = \frac{\text{TAB("Hülltriebe/BF_ZR";C_B;Ma=M_{Typ};Ge=Ge;M_G=M_G;B_G=B_G)}}{1,30}
\]
spezifische Nennleistung P_N

$$P_N = \frac{P_N}{4345.75 \text{ W/cm}}$$

Längenfaktor

$$C_L = \text{TAB}(\text{Hülltriebe/PGCL}; C_L; L=L; \text{Typ}=\text{Typ}) = 1.05$$

Zuschlag bei Übersetzungen ins Schnelle

$$\text{inv}_i = \text{MAX}(1; 1/i) = 1.00$$

$$C_i = \text{TAB}(\text{Hülltriebe/PGCi}; C_i; \text{inv}_i = \text{inv}_i) = 0.00$$

Breitenkennwert $b_{xk} = \frac{P \times 10^3 \times C_L \times (C_B + C_i)}{P_N \times 10^3} = 94.23 \text{ mm}$

Breitenfaktor $k = \text{TAB}(\text{Hülltriebe/PGBF}; k; b_{xk} = b_{xk}) = 1.10$

erforderliche Riemenbreite $b_{erf} = \frac{b_{xk}}{k} = 85.66 \text{ mm}$

gewählte Riemenbreite

$$b = \text{GEW}(\text{Hülltriebe/PGBb}; b; b \geq b_{erf}; \text{Typ}=\text{Typ}) = 115.00 \text{ mm}$$

Riemengeschwindigkeit

$$v = \text{WENN}(K_1 = 1; \frac{d_k \times \pi \times n_a}{60 \times 10^3}; \text{WENN}(K_1 = 2; \frac{d_k \times \pi \times n_b}{60 \times 10^3}; 0)) = 10.15 \text{ m/s}$$

Zugkraft $F = \frac{P \times 10^3}{v} = 2955.67 \text{ N}$

Achskraft $F_W = C_B \times F = 3842.37 \text{ N}$
Keilriementrieb, Normal - und Schmalkeilriemen (endlos)

System:
SKR steht für Schmalkeilriemen und NKR für Normalkeilriemen.
Keilriemtyp Typ = GEW("Hülltriebe/Abfrage";KR_Typ;) = SKR
Nennleistung P = 21,00 kW
Drehzahl der treibenden Scheibe
n_a = 1449 min\(^{-1}\)
Drehzahl der getriebenen Scheibe
n_b = 366 min\(^{-1}\)
vorläufiger Übersetzung
\(i_v = \frac{n_a}{n_b} = 3,959\)
Treibende Scheibe T_s
T_s = GEW("Hülltriebe/Abfrage";TrS;) = kl. Scheibe
K_1 = WENN(T_s="kl. Scheibe";1;2) = 1
zul. Biegefrequenzen für Keilriemen
f_{b,zul} = TAB("Hülltriebe/Abfrage";f_{b,zul};KR_Typ = Typ) = 100 s\(^{-1}\)

Berechnung:
Ermittlung des Betriebsfaktors C_B für Riementriebe nach DIN 2218
Abtriebsart
\(A_n = \text{GEW("Hülltriebe/BF_D2218";Ant;)} = \text{Leichter Antrieb}\)
Wahl der Gruppe:
Gruppe A : Motoren mit normalem Anlaufmoment (bis 2 fachem Nennmoment)
Gruppe B : Motoren mit hohem Anlaufmoment (über 2 fachem Nennmoment)
Gruppe Gr = GEW("Hülltriebe/BF_D2218";Gr;) = A
tägliche Betriebsdauer h_B:
h_B mit (1) bis 10 Std/Tag, (2) über 10 bis 16 Std/Tag und (3) über 16 Std/Tag
h_B = 2
Betriebsfaktor C_B

$$C_B = \text{TAB("Hülltriebe/ BF_D2218";C_B; Ant=An;Gr=Gr; h_B=h_B)} = 1,1$$

Berechnungsleistung $P_b = P * C_B = 23,10 \text{ kW}$

Wirkdurchmesser, kleine Scheibe

$$d_{wk} = \frac{1}{C_B} = 125 \text{ mm}$$

errechneter Wirkdurchmesser, große Scheibe

$$d_{wg, err} = \text{WENN}(K_1 = 1; d_{wk} * i_v; \text{WENN}(K_1 = 2; d_{wk} / i_v); 0) = 494,9 \text{ mm}$$

gewählter Wirkdurchmesser, große Scheibe

gewählt $d_{wg} = 500,0 \text{ mm}$

endgültige Übersetzung

$$i = \text{WENN}(K_1 = 1; d_{wg} / d_{wk}; \text{WENN}(K_1 = 2; d_{wk} / d_{wg}); 0) = 4,000$$

gewählte Drehzahl, getriebene Scheibe

$$n_b = n_a / i = 362,3 \text{ min}^{-1}$$

nach DIN 7753 empfohlener Achsabstand

$$e_{max} = 2 * (d_{wk} + d_{wg}) = 1250,0 \text{ mm}$$

$$e_{min} = 0,7 * (d_{wk} + d_{wg}) = 437,5 \text{ mm}$$

vorläufiger Achsabstand

gewählt $e_v = 700 \text{ mm}$

Riemengeschwindigkeit

$$v_1 = \frac{d_{wk} * \frac{n_a}{60} * 10^{-3}}{\pi} = 9,48 \text{ m/s}$$

$$v_2 = \frac{d_{wk} * \frac{n_b}{60} * 10^{-3}}{\pi} = 2,37 \text{ m/s}$$

$$v = \text{WENN}(K_1 = 1; v_1; \text{WENN}(K_1 = 2; v_2); 0) = 9,48 \text{ m/s}$$

vorläufiger Trumneigungswinkel

$$\alpha_v[\text{Grad}] = \text{asin} \left(\frac{d_{wg} - d_{wk}}{2 * e_v} \right) = 15,54^\circ$$

vorläufiger Trumneigungswinkel

$$\alpha_v[\text{Rad}] = \alpha_v[\text{Grad}] / 180 * \pi = 0,271 \text{ rad}$$

Umschlingungswinkel kl. Scheibe

$$\beta_v[\text{Grad}] = 180 - 2 * \alpha_v[\text{Grad}] = 148,92^\circ$$

Umschlingungswinkel kl. Scheibe

$$\beta_v[\text{Rad}] = \beta_v[\text{Grad}] * \pi / 180 = 2,599 \text{ rad}$$

Wirklänge des Keilriemens

$$L_w = 2 * e_v * \cos(\alpha_v[\text{Grad}]) + \frac{\pi}{2} * (d_{wk} + d_{wg}) + \alpha_v[\text{Rad}] * (d_{wg} - d_{wk}) = 2432 \text{ mm}$$

gewählte Wirklänge des Keilriemens

$$L_{w,gew} = 2530 \text{ mm}$$

Kennwert $f_1 = \frac{L_{w,gew} * \pi}{8} * (d_{wk} + d_{wg}) = 387,06 \text{ mm}$

Kennwert $f_2 = \left(\frac{d_{wg} - d_{wk}}{8} \right)^2 = 17578,13 \text{ mm}^2$

Achsabstand $e = f_1 + \sqrt{f_1^2 - f_2} = 750,70 \text{ mm}$
Trumneigungswinkel \(\alpha_{[Grad]} = \arcsin \left(\frac{d_{wg} - d_{wk}}{2 \times e} \right) \), \(\alpha_{[Grad]} = 14,46^\circ \)

\[\text{Trumneigungswinkel } \alpha_{[Rad]} = \alpha_{[Grad]} \times \frac{\pi}{180} = 0,2524 \text{ rad} \]

Umschlingungswinkel kleine Scheibe

\[\beta_{[Grad]} = 180 - 2 \times \alpha_{[Grad]} = 151,08^\circ \]

\[\beta_{[Rad]} = \beta_{[Grad]} \times \frac{\pi}{180} = 2,64 \text{ rad} \]

Wahl des Profils nach DIN 7753 für Schmalkeilriemen und DIN 2215 für Normalkeilriemen

Profil = GEW("Hülltriebe/"Typ:Pr;) = SPA

\[n_k = \frac{WENN(K_1 = 1; n_a ; n_b)}{P_{Ne}} = 1449,0 \text{ 1/min} \]

Nennleistung \(P_N \)

\[P_N = P_{Ne} = 4,68 \text{ kW} \]
Längenfaktor

\[c_L = \text{TAB("Hülltriebe/Typ":" Typ; } c_L : L_w = L_{w, \text{gew}}; Pr=\text{Profil}) = 1,00 \]

Umschalungsfaktor bzw. Winkelfaktor \(c_\beta = 0,92 \)

erforderliche Anzahl der Keilriemen

\[n_{\text{erf}} = \frac{P_b}{P_N \cdot c_L \cdot c_\beta} = 5,4 \]

gewählte Anzahl der Keilriemen \(n = 6 \)

Anzahl der Scheiben \(Z = 2 \)

Biegefrequenz \(f_B = \frac{v \cdot Z}{L_{w, \text{gew}} \cdot 10^{-3}} = 7,494 \text{ s}^{-1} \)

Nachweis

\[\frac{f_B}{f_{B,zul}} = 0,07 \leq 1 \]

Achskraft

\[F_{W,\text{min}} = 1,5 \cdot \frac{P_b}{v} = 3,655 \text{ kN} \]

\[F_{W,\text{max}} = 2 \cdot \frac{P_b}{v} = 4,873 \text{ kN} \]

Falls keine Spannrollen oder Verstellscheiben angeordnet sind, muss der Achsabstand zum Spannen und Auflegen der Riemens mindestens zwischen \(x = 0,03 \cdot L_W \) und \(y = 0,015 \cdot L_W \) verstellbar sein.

\[x_L = 0,03 \cdot L_{w, \text{gew}} = 75,9 \text{ mm} \]

\[x_R = 0,015 \cdot L_{w, \text{gew}} = 38,0 \text{ mm} \]

maximaler Achsabstand \(e_{\text{max}} = e + x_L = 826,6 \text{ mm} \)

minimaler Achsabstand \(e_{\text{min}} = e + x_R = 712,7 \text{ mm} \)

Kranzbreite Riemenscheibe nach DIN 2211

Randabstand \(f = 10,0 \text{ mm} \)

Rillenabstand \(a = 15,0 \text{ mm} \)

Kranzbreite \(B = 2 \cdot f + (n-1) \cdot a = 95,0 \text{ mm} \)
Keilrippenriementrieb

System:
- Nennleistung \(P = 5,10 \text{ kW} \)
- Anzahl der Scheiben einschl. Spannrollen \(Z = 2 \)
- Drehzahl der treibenden Scheibe \(n_a = 1450 \text{ min}^{-1} \)
- Drehzahl der getriebenen Scheibe \(n_b = 350 \text{ min}^{-1} \)
- Vorläufiger Übersetzung \(i_v = \frac{n_a}{n_b} = 4,143 \)

Treibende Scheibe:
- \(TS = \text{GEW("Hülltriebe/Abfrage";TrS;)} = \text{kl. Scheibe} \)
- Kennzahl \(K_1 = \text{WENN}(TS="\text{kl. Scheibe"};1;2) = 1 \)

Berechnung:

Ermittlung des Betriebsfaktors \(C_B \) für Riementriebe nach DIN 2218

Abtriebsart
- \(An = \text{GEW("Hülltriebe/BF_D2218";Ant;)} = \text{Mittelschwerer Antrieb} \)

Wahl der Gruppe:
- Gruppe A: Motoren mit normalem Anlaufmoment (bis 2 fachem Nennmoment)
- Gruppe B: Motoren mit hohem Anlaufmoment (über 2 fachem Nennmoment)
- Gruppe \(Gr = \text{GEW("Getriebe/BF_D2218";Gr;)} = A \)

- tägliche Betriebsdauer \(h_B \):
 - \(h_B \) mit (1) bis 10 Std/Tag, (2) über 10 bis 16 Std/Tag und (3) über 16 Std/Tag
 - \(h_B = 2 \)

Betriebsfaktor \(C_B \)
- \(C_B = \text{TAB("Hülltriebe/BF_D2218";C_B;Ant=An;Gr=Gr;h_B=h_B)} = 1,2 \)
- Berechnungsleistung \(P_B = \text{P} \cdot C_B = 6,12 \text{ kW} \)
- Profil = \(\text{GEW("Hülltriebe/KRR";Pr;)} = \text{PL} \)
- Bezugsgröße \(h_B = \text{TAB("Hülltriebe/KRR";h_B;Pr=Profil)} = 3,50 \text{ mm} \)
- Bezugsdurchmesser, große Scheibe \(d_{bg} = 200 \text{ mm} \)
errechneter Bezugsdurchmesser der kleinen Scheibe
d_{bk,err,1} = \frac{d_{bg}}{i_v^1} + 2 \cdot h_b \cdot (1/i_v^1) = 43 \text{ mm}
d_{bk,err,2} = \frac{d_{bg}}{i_v^2} + 2 \cdot h_b \cdot (i_v^2 - 1) = 851 \text{ mm}
d_{bk,err} = \text{WENN}(K_1 = 1; d_{bk,err,1}; \text{WENN}(K_1 = 2; d_{bk,err,2}; 0)) = 43 \text{ mm}
gewählter Bezugsdurchmesser der kleinen Scheibe
d_{bk} = 125 \text{ mm}

Mindestbezugsdurchmesser
d_{bmin} = \text{TAB("Hülltriebe/KRR";d_{bmin}; Pr = Profil)} = 75,00 \text{ mm}

Nachweis
d_{bmin} / d_{bk} = 0.60 \leq 1

dergußige Übersetzung
i_1 = \frac{d_{bg} + 2 \cdot h_b}{d_{bk} + 2 \cdot h_b} = 1.568

i_2 = \frac{d_{bk} + 2 \cdot h_b}{d_{bg} + 2 \cdot h_b} = 0.638

i = \text{WENN}(K_1 = 1 ; i_1 ; \text{WENN}(K_1 = 2 ; i_2 ; 0)) = 1.568

dergußige Drehzahl, getriebene Scheibe
n_b = n_a / i = 924,7 \text{ min}^{-1}
nach DIN 7753 empfohlener Achsabstand
e_{max} = 2 \cdot (d_{bk} + d_{bg}) = 650,0 \text{ mm}
e_{min} = 0.7 \cdot (d_{bk} + d_{bg}) = 227,5 \text{ mm}
vorläufiger Achsabstand e_v = 220 \text{ mm}

Riemengeschwindigkeit
v_1 = (d_{bk} + 2 \cdot h_b) \cdot \pi \cdot \frac{n_a}{60 \cdot 10^{-3}} = 10,02 \text{ m/s}
v_2 = (d_{bk} + 2 \cdot h_b) \cdot \pi \cdot \frac{n_b}{60 \cdot 10^{-3}} = 6,39 \text{ m/s}

Riemengeschwindigkeit
v = \text{WENN}(K_1 = 1 ; v_1 ; \text{WENN}(K_1 = 2 ; v_2 ; 0)) = 10,02 \text{ m/s}
zul. Riemengeschwindigkeit
v_{zul} = \text{TAB("Hülltriebe/KRR";v_{max}; Pr = Profil)} = 40 \text{ m/s}

Kontrolle
v / v_{zul} = 0.25 \leq 1

vorläufiger Trumneigungswinkel
\alpha_v[\text{Grad}] = \text{asin} \left(\frac{d_{bg} \cdot \cdot d_{bk}}{2 \cdot e_v} \right) = 9.81^\circ

vorläufiger Trumneigungswinkel
\alpha_v[\text{Rad}] = \frac{\alpha_v[\text{Grad}]}{180^\circ \cdot \pi} = 0.171 \text{ rad}

Umschlingungswinkel kl. Scheibe
\beta_v[\text{Grad}] = 180 - 2 \cdot \alpha_v[\text{Grad}] = 160,38^\circ

Umschlingungswinkel kl. Scheibe
\beta_v[\text{Rad}] = \beta_v[\text{Grad}] \cdot \frac{\pi}{180} = 2,799 \text{ rad}
errechnete Bezugslänge des Keilrippenriemens
\[
L_{b,err} = 2 \times e_v \times \cos(\alpha_v[\text{Grad}]) + \frac{\pi}{2} \times (d_{bk} + d_{bg}) + \alpha_v[\text{Rad}] \times (d_{bg} - d_{bk}) = 956,9 \text{ mm}
\]
gewählte Bezugslänge des Keilrippenriemens.
\[
L_{b,gew} = \text{GEW}("Hülltriebe/KRR"; L_b ; L_b \geq L_{b,err}; Pr = \text{Profil}) = 1041 \text{ mm}
\]
Kennwert \(f_1 \) = \[
\frac{L_{b,gew} \times \frac{\pi}{8} \times (d_{bk} + d_{bg})}{4} = 132,62 \text{ mm}
\]
Kennwert \(f_2 \) = \[
\frac{(d_{bg} - d_{bk})^2}{8} = 703,13 \text{ mm}^2
\]
Achsabstand \(e \) = \[
\sqrt{f_1^2 - f_2} = 262,56 \text{ mm}
\]
Trumneigungswinkel
\[
\alpha_v[\text{Grad}] = \arcsin\left(\frac{d_{bg} - d_{bk}}{2 \times e}\right) = 8,21 ^\circ
\]
Trumneigungswinkel
\[
\alpha_v[\text{Rad}] = \alpha_v[\text{Grad}] \times \frac{\pi}{180} = 0,1433 \text{ rad}
\]
Umschlingungswinkel kleine Scheibe
\[
\beta_{Grad} = 180 - 2 \times \alpha_v[\text{Grad}] = 163,58 ^\circ
\]
Umschlingungswinkel kleine Scheibe
\[
\beta_{Rad} = \beta_{Grad} \times \frac{\pi}{180} = 2,86 \text{ rad}
\]
Berechnung der Keilrippenanzahl
Nennleistung je Rippe \(P_N \) = \[
2,08 \text{ kW}
\]
Längenfaktor \(c_L \) = \[
\text{TAB}("Hülltriebe/KRR"; c_L ; L_b = L_{b,gew}) = 0,86
\]
Umschlingungsfaktor bzw. Winkelfaktor \(c_\beta \) = \[
\text{TAB}("Hülltriebe/Wfaktor"; c_\beta ; \beta = \beta_{Grad}) = 0,96
\]
erforderliche Anzahl der Keilrippen
\[
N_{erf} = \frac{P_b}{P_N \times c_L \times c_\beta} = 3,56
\]
gewählte Anzahl der Keilriemen \(n \) = 4
Biegefrequenz \(f_B \) = \[
\frac{v \times Z}{L_{b,gew} \times 10^{-3}} = 19,251 \text{ s}^{-1}
\]
Die zulässige Biegefrequenz für Keilrippenriemen \(f_{B,zul} = 120 \text{ s}^{-1} \)
zul. Biegefrequenz \(f_{B,zul} = 120,0 \text{ s}^{-1} \)
Nachweis
\[
\frac{f_B}{f_{B,zul}} = 0,16 < 1
\]
Kettentrieb

System:

Leistung \(P_1 = 2,80 \text{ kW} \)
Antriebsdrehzahl \(n_1 = 125,00 \text{ min}^{-1} \)
Bandrollendrehzahl \(n_2 = 50,00 \text{ min}^{-1} \)
Wellenabstand \(a_0 = 1000,00 \text{ mm} \)
Wellenmittenneigung \(\alpha = 39,00^\circ \)
Betriebsfaktor \(K_A = 1,60 \)
Lebensdauer \(L_h = 13000,00 \text{ h} \)
Teilung \(p = 25,00 \)

Berechnung der Übersetzung und Zähnenzahl:

Übersetzung \(i = n_1 / n_2 = 2,50 \)
gewählt Zähnezahl \(z_1 = 23,00 \)
Zähnezahl \(z_2 = z_1 \times i = 57,50 \)
gewählt Zähnezahl \(z_2 = 57,00 \)

Ermittlung der Kettengröße:

Faktor zur Berücksichtigung der Zähnezahl:
\(f_1 = 24 \times z_1^{-1.08} = 0,81 \)
Verhältnis \(\varepsilon_2 = a_0/p = 40,00 \)
Korrekturfaktor zur Berücksichtigung der unterschiedlichen Wellenabstände:
\(f_2 = 0,45 \times \varepsilon_2^{0.215} = 0,99 \)
Korrekturfaktor zur Berücksichtigung der Kettengliedform:
0,8 bei Ketten mit gekröpften Verbindungsglied, ansonsten 1
\(f_3 = 1,00 \)
Korrekturfaktor zur Berücksichtigung der von der Kette zu überlaufenden Räder:
\(f_4 = 1,00 \)
Korrekturfaktor zur Berücksichtigung der Lebensdauer:
\[f_5 = \left(\frac{15000}{L_h} \right)^{1/3} = 1.05 \]
Korrekturfaktor zur Berücksichtigung der Umweltbedingungen:
\[f_6 = 0.70 \]

Diagrammleistung:
\[P_D = \frac{K_A \cdot P_1 \cdot f_1}{f_2 \cdot f_3 \cdot f_4 \cdot f_5 \cdot f_6} = 4.99 \text{ kW} \]

gewählt: Rollenkette DIN 8187 - 16 B1
Rollenkette RK = 16B
Gewicht q = TAB("Getriebe/Rkette8187"; G1; Bez=RK) = 2.70 kg/m
Teilung p = TAB("Getriebe/Rkette8187"; p; Bez=RK) = 25.40 mm

Kettengliederzahl:
\[X_0 = 2 \cdot \frac{a_0}{p} + \frac{z_1 + z_2}{2} + \frac{1}{2} \left(\frac{z_1 - z_2}{2} \right)^2 \cdot \frac{p}{a_0} = 119.48 \text{ Glieder} \]

gewählt \(X = 120.00 \text{ Glieder} \)

endgültiger Achsabstand:
\[a = \frac{p}{4} \left(\left(X \cdot \frac{z_1 + z_2}{2} \right) + \sqrt{X \cdot \left(\frac{z_1 + z_2}{2} \right)^2 - 2 \cdot \left(\frac{z_2 - z_1}{\pi} \right)^2} \right) = 1006.62 \text{ mm} \]

Ermittlung der Schmierung:
Teilkreisdurchmesser \(d_1 = \frac{p}{\sin \left(\frac{180}{z_1} \right)} = 186.54 \text{ mm} \)

Kettengeschwindigkeit \(v = \frac{d_1 \cdot \pi \cdot n_1}{60 \cdot 10^3} = 1.22 \text{ m/s} \)

Es ist eine Tropfschmierung vorzusehen.
Berechnung der Wellenbelastung:
maximale Wellenbelastung (obere Welle):
Tangentialkraft \(F_t = \frac{10^3 P_1}{\nu} \) = 2295,08 N
Teilkreisdurchmesser \(d_2 = \frac{p}{\sin \left(\frac{180}{z_2} \right)} \) = 461,08 mm
\(\varepsilon_0 = \arcsin \left(\frac{\left(d_2 - d_1 \right)}{2 \cdot a} \right) \) = 7,84 \(^\circ \)
Turmlänge \(l_T = a \cdot \cos(\varepsilon_0) \) = 997,21 mm
Neigungswinkel \(\psi = \alpha - \varepsilon_0 \) = 31,16 \(^\circ \)
Relativer Durchhang \(f_{rel} = 2 \% \)
Spezifischer Stützzug \(F'_s = 5,00 \)
Umfangkraft:
\(F_{so} = q \cdot 9,81 \cdot l_T \cdot \left(F'_s + \sin(\psi) \right)/10^3 \) = 145,73 N
Stützzug am oberen Kettenrad:
\(F_w = F_t \cdot K_A + 2 \cdot F_{so} \) = 3963,59 N
offener Flachriementrieb: Antrieb mit Mehrschichtriemen (Extremultus)

Bauart 80 Typ LT

Textilgewebe
Polyamid-Zugschicht
Leder-Laufschicht

Vorgaben:
- Antriebsleistung des Motors \(P = 80,0 \text{ kW} \)
- Anzahl der Scheiben \(Z = 2 \)
- bei Drehzahl des Antriebs \(n_k = 1300,0 \text{ 1/min} \)
- Drehzahl der getriebenen Scheibe \(n_g = 400,0 \text{ 1/min} \)
- vorläufiger Achsabstand \(e_v = 870,0 \text{ mm} \)
- vorläufige Übersetzung \(i_v = \frac{n_k}{n_g} = 3,25 \)
- vorläufige Riemengeschwindigkeit \(v_v = 20,00 \text{ m/s} \)

Berechnung:

Durchmesser
errechneter Durchmesser der kleinen Scheibe
\[
d_{k_{err}} = \frac{v_v}{n_k / 60 \cdot \pi \cdot 10^3} = 293,82 \text{ mm}
\]

gewählt \(d_k = \text{GEW}("Hülltriebe/RSAbm"; d; d \geq d_{k_{err}}) = 315,0 \text{ mm} \)

errechneter Durchmesser der großen Scheibe
\[
d_{g_{err}} = d_k \cdot \frac{n_k}{n_g} = 1023,75 \text{ mm}
\]

gewählt \(d_g = \text{GEW}("Hülltriebe/RSAbm"; d; d \geq d_{g_{err}}) = 1120,0 \text{ mm} \)
Riemenlänge

Riemeninnenlänge mit vorläufigem Achsabstand
vorläufiger Trumneigungswinkel
\[\alpha_{v[\text{Grad}]} = \arcsin \left(\frac{d_g - d_k}{2 \times e_v} \right) \]
vorläufiger Trumneigungswinkel
\[\alpha_{v[\text{Rad}]} = \alpha_{v[\text{Grad}]} \times \frac{\pi}{180} \]

Umschlingungswinkel kl. Scheibe
\[\beta_{v[\text{Grad}]} = 180 - 2 \times \alpha_{v[\text{Grad}]} \]

Umschlingungswinkel kl. Scheibe
\[\beta_{v[\text{Rad}]} = \beta_{v[\text{Grad}]} \times \frac{\pi}{180} \]

errechnete Innenlänge des Flachriemens (vorläufig)
\[L_{vi,\text{err}} = 2 \times e_v \times \cos \left(\alpha_{v[\text{Grad}]} \right) + \frac{\pi}{2} \times (d_k + d_g) + \alpha_{v[\text{Rad}]} \times (d_g - d_k) \]

empfohlene Innenlängen für endlos hergestellte Flachriemen
\[L_i = \text{GEW}("\text{Hülltriebe/STLFR}"; L_i; L_i \geq L_{vi,\text{err}}) = 4250 \text{ mm} \]

Kennwert \(f_1 \)
\[f_1 = \frac{L_i}{4} \times \left(\frac{\pi}{8} \times (d_k + d_g) \right) \]

Kennwert \(f_2 \)
\[f_2 = \frac{(d_g - d_k)^2}{8} \]

Achsabstand \(e \)
\[e = \sqrt{f_1^2 - f_2} \]

Bei Kurztrienen und endlosen Riemen ist eine Verstellbarkeit des Achsabstand durch Spannschienen vorzusehen.
\[x_L = 0,03 \times L_i \]
\[x_R = 0,015 \times L_i \]

Trumneigungswinkel
\[\alpha_{[\text{Grad}]} = \arcsin \left(\frac{d_g - d_k}{2 \times e} \right) \]

Trumneigungswinkel
\[\alpha_{[\text{Rad}]} = \alpha_{[\text{Grad}]} \times \frac{\pi}{180} \]

Umschlingungswinkel kleine Scheibe
\[\beta_{[\text{Grad}]} = 180 - 2 \times \alpha_{[\text{Grad}]} \]

Umschlingungswinkel kleine Scheibe
\[\beta_{[\text{Rad}]} = \beta_{[\text{Grad}]} \times \frac{\pi}{180} \]
errechnete Innenlänge des Flachriemens
\[L_{i,\text{err}} = 2 \times e \times \cos(\alpha_{[\text{Grad}}) + \frac{\pi}{2} \times (d_k + d_g) + \alpha_{[\text{Rad}} \times (d_g - d_k) = 4253,1 \text{ mm} \]

endgültige Übersetzung
\[i = \frac{d_g}{d_k} = 3,556 \]

Riemengeschwindigkeit
\[v = \frac{d_g \times C_1}{n_k/60 \times 10^{-3} = 21,44 \text{ m/s} \]

Größenauswahl
Kennwert \(C_1 \) = TAB("Hülltriebe/EXR";\(C_1 \);v=v) = 0,87
Faktor \(d_g C_1 \) = \(d_k \times C_1 \) = 274,05 mm
gewählte Riemengröße und Typ
\(\text{Gr} = \text{GEW("Hülltriebe/EXR"; \text{Größe};d_k \geq d_C \text{_1})} = 28 \)
Bauart 80 Typ = \text{GEW("Hülltriebe/EXR";B80;GR = \text{Gr})} = LT

Biegefrequenz \(f_b \)
\[f_b = \frac{v \times Z}{L_i \times 10^{-3} = 10,089 \text{ s}^{-1} \]

zul. Biegefrequenz
\[f_{b,zul} = \text{TAB("Hülltriebe/EXBFQ"; f_{b,zul}; \text{G=Gr}; d_k = d_g) = 15 \text{ s}^{-1} \]

Nachweis Biegefrequenz
\[f_{b}/f_{b,zul} = 0,67 \leq 1 \]

Nennzugkraft
\[F_N = \text{TAB("Hülltriebe/EXF"; FN; \text{Größe}=\text{Gr}) = 280,0 \text{ N/cm} \]

spezifische Nennleistung
\[P_N = F_N \times v = 6003,2 \text{ W/cm} \]

Umschlingungsfaktor
\[C_B = \text{TAB("Hülltriebe/WFFR";C_B;B = B[\text{Grad}]) = 1,18} \]

Antriebsart A
\[\text{A = GEW("Hülltriebe/EXBF";\text{AnTArt};) = gleichmäßig mit geringen Massen} \]

Betriebsfaktor \(C_B = \text{GEW("Hülltriebe/EXBF";C_B;AnTArt=A) = 1,00} \]

erforderliche Riemenbreite
\[b_{erf} = \frac{P \times C_B \times C_\beta}{P_N} = 157,2 \text{ mm} \]

gewählte Riemenbreite
\[b = \text{GEW("Hülltriebe/EXR";b;b \geq b_{erf}) = 160,0 \text{ mm} \]

Faktoren für die Auflagegestreckung
Beiwert \(C_2 \) = \text{TAB("Hülltriebe/FaktEx";C_2;B_{voh}=B_B) = 1,50} \]
Beiwert \(C_3 \) = \text{TAB("Hülltriebe/FaktEx";C_3;B_{voh}=B_B) = 0,00} \]
Beiwert \(C_4 \) = \text{TAB("Hülltriebe/FaktEx";C_4;RG=Gr;v_{voh}=v) = 0,11} \]

Auflagegestreckung:
\[\Delta L = \frac{C_2 + C_3 + C_4 \times L_i}{100} = 68,42 \text{ mm} \]

Achskraft \(F_W = C_2 \times F_N \times b \times 10^{-1}/C_B \)
\[= 5694,9 \text{ N} \]
offener Flachriementrieb: Antrieb mit Gewebe- und Lederriemen

Vorgaben
Antriebsleistung des Motors $P = 20.0$ kW
Anzahl der Scheiben $Z = 2$
bei Drehzahl des Antriebs $n_k = 800.0$ 1/min
Drehzahl der getriebenen Scheibe $n_g = 400.0$ 1/min
vorläufiger Achsabstand $e_v = 1000.0$ mm
vorläufige Übersetzung $i_v = n_k/n_g = 2.00$
vorläufige Riemengeschwindigkeit $v_v = 10.00$ m/s

Berechnung:

Durchmesser der Scheiben

errechneter Durchmesser der kleinen Scheibe

$$d_{kerr} = \frac{v_v}{n_k/60 \cdot \pi} \cdot 10^3 = 238,73$$ mm

gewählt $d_k = \text{GEW}(\text{"Hülltriebe/FR"}; d; d \geq d_{kerr}) = 250.0$ mm

errechneter Durchmesser der großen Scheibe

$$d_{gerr} = d_k \cdot \frac{n_k}{n_g} = 500.00$$ mm

gewählt $d_g = \text{GEW}(\text{"Hülltriebe/FR"}; d; d \geq d_{gerr}) = 500.0$ mm

Riementänge

Riemeninnenlänge mit vorläufigem Achsabstand

vorläufiger Trumneigungswinkel

$$\alpha_v[\text{Grad}] = \arcsin\left(\frac{d_g - d_k}{2 \times e_v}\right) = 7.18^\circ$$

vorläufiger Trumneigungswinkel

$$\alpha_v[\text{Rad}] = \frac{\alpha_v[\text{Grad}]}{180^\circ \pi} = 0.125 \text{ rad}$$
Umschlingungswinkel kl. Scheibe

\[\beta_v[\text{Grad}] = 180 - 2 \cdot \alpha_v[\text{Grad}] \quad = 165,64^\circ \]

Umschlingungswinkel kl. Scheibe

\[\beta_v[\text{Rad}] = \beta_v[\text{Grad}] \cdot \pi / 180 \quad = 2,891 \text{ rad} \]

errechnete Innenlänge des Flachriemens (vorläufig)

\[L_{vi, err} = 2 \times e_v \times \cos (\alpha_v[\text{Grad}]) + \frac{\pi}{2} \times (d_k + d_g) + \alpha_v[\text{Rad}] \times (d_g - d_k) \quad = 3193,7 \text{ mm} \]

empfohlene Innenlänge des Flachriemens

\[L_i = \text{GEW}("\text{Hülltriebe/STLFR}"; L_i; L_i \geq L_{vi, err}) \quad = 3350 \text{ mm} \]

Kennwert \(f_1 = \frac{L_i \cdot \pi}{4 \times 8} \times (d_k + d_g) \quad = 542,98 \text{ mm} \)

Kennwert \(f_2 = \frac{(d_g - d_k)^2}{8} \quad = 7812,50 \text{ mm}^2 \)

Achsabstand \(e = f_1 + \sqrt{f_1^2 - f_2} \quad = 1078,72 \text{ mm} \)

Bei Kurztrieben und endlosen Riemens ist eine Verstellbarkeit des Achsabstand durch Spannschienen vorzusehen.

\[x_L = 0,03 \times L_i \quad = 100,5 \text{ mm} \]

\[x_R = 0,015 \times L_i \quad = 50,3 \text{ mm} \]

Riemeninnenlänge mit endgültigem Achsabstand

Trumneigungswinkel

\[\alpha_{[\text{Grad}]} = \arcsin \left(\frac{d_g - d_k}{2 \times e} \right) \quad = 6,65^\circ \]

Trumneigungswinkel

\[\alpha_{[\text{Rad}]} = \alpha_{[\text{Grad}]} \cdot \pi / 180 \quad = 0,1161 \text{ rad} \]

Umschlingungswinkel kleine Scheibe

\[\beta_{[\text{Grad}]} = 180 - 2 \cdot \alpha_{[\text{Grad}]} \quad = 166,70^\circ \]

Umschlingungswinkel kleine Scheibe

\[\beta_{[\text{Rad}]} = \beta_{[\text{Grad}]} \cdot \pi / 180 \quad = 2,909 \text{ rad} \]

errechnete Innenlänge des Flachriemens

\[L_{i,err} = 2 \times e \times \cos (\alpha_{[\text{Grad}]}) + \frac{\pi}{2} \times (d_k + d_g) + \alpha_{[\text{Rad}]} \times (d_g - d_k) \quad = 3350,0 \text{ mm} \]

endgültige Übersetzung

\[i = \frac{d_g}{d_k} \quad = 2,000 \]

Riemengeschwindigkeit

\[v = d_k \times \pi \times n_k / 60 \times 10^{-3} \quad = 10,47 \text{ m/s} \]

Riemen sorte

\[RS = \text{GEW}("\text{Hülltriebe/FRDat}"; RS;) \quad = \text{Hochgeschmeidig_HGL} \]
Maschinenbaubibliothek

Ordnern: Hülltriebe

Riemengeschwindigkeit

\[v_{zul} = \text{TAB("Hülltriebe/FRDat";v_{zul};RS=RS)} = 50,00 \text{ m/s} \]

Nachweis

\[\frac{v}{v_{zul}} = 0,21 \leq 1 \]

Biegegeschwindigkeit

\[f_b = \frac{v \cdot Z}{L_i \cdot 10^3} \]

\[\text{zul. Biegegeschwindigkeit } f_{b,zul} = 25 \text{ s}^{-1} \]

Nachweis Biegegeschwindigkeit

\[\frac{f_b}{f_{b,zul}} = 0,25 \leq 1 \]

Berechnung der Riemendicke

\[s_{s,dk} = \text{TAB("Hülltriebe/FRDat";s_dk;RS=RS)} = 0,05 \]

\[s_{max} = s_{s,dk} \cdot d_k = 12,5 \text{ mm} \]

gewählte Riemendicke

\[s = 5 \text{ mm} \]

vorf. Verhältnis Riemendicke/Durchmesser

\[\frac{s_{s,dk,vorh}}{s_{s,dk}} = 0,0200 \]

Nachweis

\[\frac{s_{s,dk,vorh}}{s_{s,dk}} = 0,40 \leq 1 \]

zul. Zugspannung des Riemenswerkstoffs

\[\sigma_{zul} = \text{TAB("Hülltriebe/FRDat";\sigma_zul;RS=RS)} = 500,00 \text{ N/cm}^2 \]

Biegeelastizitätsmodul

\[E_b = \text{TAB("Hülltriebe/FRDat";E_b;RS=RS)} = 5000 \text{ N/cm}^2 \]

Dichte

\[\rho = 1200 \text{ kg/m}^3 \]

Reibungszahl \(\mu \) (für Lederriemen im trockenen Zustand \(\mu_L = 0,22 + 0,012 \cdot v \))

\[\mu_L = 0,22 + 0,0125 \cdot v \]

\[\mu_{GT} = \text{TAB("Hülltriebe/FRDat";\mu_GT;RS=RS)} = 0,00 \]

Reibungszahl \(\mu = \text{WENN(}\mu_{GT} = 0; \mu_L; \mu_{GT} \) \]

\[= 0,35 \]

Eulersche \(e = 2,718281828 \)

Trumkraftverhältnis

\[m = e^{\mu \cdot \beta \text{[Rad]}} = 2,768 \]

Ausbeute \(k = \frac{m - 1}{m} = 0,639 \)

Biegespannungen

\[\sigma_b = E_b \cdot s / d_k = 100,0 \text{ N/cm}^2 \]

Fliehzugspannung

\[\sigma_f = \rho \cdot v^2 \cdot 10^{-4} = 13,2 \text{ N/cm}^2 \]

zul. Lasttrumspannung

\[\sigma_{Lt,zul} = \sigma_{zul} - \sigma_f = 386,8 \text{ N/cm}^2 \]

spezifische Nennleistung

\[P_n = \sigma_{Lt,zul} \cdot k \cdot s \cdot 10^{-1} \cdot v = 1293,9 \text{ W/cm} \]

optimale Riemengeschwindigkeit

\[v_{opt} = \sqrt{\frac{\sigma_{zul} \cdot \sigma_b \cdot 10^4}{3 \cdot \rho}} = 33,33 \text{ m/s} \]
Reibungsfaktoren \(C_\mu \)

Umweltbedingungen
(1) Trockene Luft, normale Schwankungen von Feuchtigkeit und Temperatur
(2) Starke, schnelle Schwankungen von Feuchtigkeit und Temperatur
(3) Vollständig gekapselt; ölige Atmosphäre; gelegentliche Ölspritzer; staubige Luft
(4) Sehr starke, langsame Schwankungen von Feuchtigkeit und Temperatur. Nasser Raum

Wahl der Umwelbedingung UB
\[UB = \text{GEW("Hülltriebe/UMBED";UB;)} = 1 \]
Reibungsfaktor \(C_\mu \)
\[C_\mu = \text{TAB("Hülltriebe/UMBED";C_\mu; UB=UB)} = 1,00 \]

Ermittlung des Betriebsfaktors \(C_B \) für Riementriebe nach DIN 2218

Abtriebsart
\[An = \text{GEW("Hülltriebe/BF_D2218";Ant;)} = \text{Mittelschwerer Antrieb} \]

Wahl der Gruppe:
Gruppe A : Motoren mit normalem Anlaufmoment (bis 2 fachem Nennmoment)
Gruppe B : Motoren mit hohem Anlaufmoment (über 2 fachem Nennmoment)

Gruppe Grp = \[\text{GEW("Hülltriebe/BF_D2218"; Gr;)} = A \]

tägliche Betriebsdauer \(h_B \):
\[h_B = 3 \]

Betriebsfaktor \(C_B \)
\[C_B = \text{TAB("Hülltriebe/BF_D2218";C_B;Ant=An;Gr=Grp;h_B=3)} = 1,3 \]

erforderliche Riemenbreite
\[b_{erf} = \frac{P * 10^3 * C_B * C_\mu}{P_n} = 200,9 \text{ mm} \]
gewählte Riemenbreite \(b = 200,0 \text{ mm} \)

Faktoren für die Auflagestreckung
Auflagedehnung des Riemens beim Vorspannen
\[\varepsilon_0 = \text{TAB("Hülltriebe/FRAD"; \varepsilon_0 ; RA =RArt; ZS =ZGS)} = 0,013 \]
Auflagestreckung \(\Delta L = \varepsilon_0 * L_i = 43,55 \text{ mm} \)
Nutzkraft Riemen \(F = \frac{P *10^3}{v} = 1910,2 \text{ N} \)

Wahl der Betriebsart:
Dehnungsbetrieb (1), Spannwellenbetrieb (2) oder Spannrollenbetrieb (3)

Betriebsart \(k = 3 \)

Achskraft
\[F_W = \text{WENN(k=1;4*F;WENN(k=2;3*F;WENN(k=3;2*F;0)))) = 3820,4 \text{ N} \]
Synchron- oder Zahnriemenberechnung

System: Antrieb mit Synchroflex-Zahnriemen
Nennleistung $P = 5,40 \, \text{kW}$
Anz. der Scheiben einschl. Spannrollen $Z = 2$
Große Scheibe $S_G = \text{GEW("Hülltriebe/Abfrage";S_G;)} = \text{ungezahnt}$
Die kleine Scheibe treibt an.
Drehzahl der treibenden Scheibe $n_a = 1500 \, \text{min}^{-1}$
Drehzahl der getriebenen Scheibe $n_b = 455 \, \text{min}^{-1}$
Aus den Drehzahlen errechnete Übersetzung $i = \frac{n_a}{n_b} = 3,297$
vorläufiger Achsabstand gew. $e_v = 550 \, \text{mm}$

Scheibengeometrie und Riemengröße:
Type = \text{GEW("Hülltriebe/SYNABM";Typ;)} = T 10
Teilung $p = \text{TAB("Hülltriebe/SYNABM";p;Typ=Type;)} = 10,0 \, \text{mm}$
Modul der Verzahnung $m = \text{TAB("Hülltriebe/SYNABM";m;Typ=Type;)} = 3,183 \, \text{mm}$
Abstand vom Zahnkopfkreis Scheibe bis zur Achse Zuglitze $u = \text{TAB("Hülltriebe/SYNABM";u;Typ=Type;)} = 0,920 \, \text{mm}$
Zahnhöhe $h = \text{TAB("Hülltriebe/SYNABM";h;Typ=Type;)} = 2,50 \, \text{mm}$
Mindestzähnezahl z_{min} bei gleichsinniger Biegung, bei gegensinniger Biegung 1,5-fache Werte.
$z_{\text{min}} = \text{TAB("Hülltriebe/SYNABM";z_{\text{min}};Typ=Type;)} = 12$
Zähnezahl, kleine Scheibe $z_k = 30$
errechnete Zähnezahl der große Scheibe $z_{\text{g,err}} = z_k \cdot i = 98,9$

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
gewählte Zähnezahl der große Scheibe
\[\text{gew. } z_g = 99 \]
endgültige Übersetzung
\[i = \frac{z_g}{z_k} = 3,300 \]
Teilkreisdurchmesser der kl. Scheibe
\[d_k = \frac{m*z_k}{2} = 95,49 \text{ mm} \]
Teilkreisdurchmesser der gr. Scheibe
\[d_g = \frac{m*z_g}{2} = 315,12 \text{ mm} \]
Kopfkreisdurchmesser der kl. Scheibe
\[d_{ek} = d_k - 2 * u = 93,65 \text{ mm} \]
Kopfkreisdurchmesser der gr. Scheibe (bei einer Flachscheibe)
\[d_{eg,Fl} = d_g - 2 * (u + h) = 308,28 \text{ mm} \]
Kopfkreisdurchmesser der gr. Scheibe (bei einer verzahnten Scheibe)
\[d_{eg,verz} = d_g - 2 * u = 313,28 \text{ mm} \]

Anzahl der Riemenzähne, Riemenlänge:

vorläufiger Trumneigungswinkel
\[\alpha_v[\text{Grad}] = \arcsin \left(\frac{d_g - d_k}{2 * e_v} \right) = 11,52 ^\circ \]

vorläufiger Trumneigungswinkel
\[\alpha_v[\text{Rad}] = \frac{\alpha_v[\text{Grad}]}{180^\circ * \pi} = 0,201 \text{ rad} \]

Umschlingungswinkel kl. Scheibe
\[\beta_v[\text{Grad}] = 180 - 2 * \alpha_v[\text{Grad}] = 156,96 ^\circ \]

Umschlingungswinkel kl. Scheibe
\[\beta_v[\text{Rad}] = \frac{\beta_v[\text{Grad}]}{180} * \pi = 2,739 \text{ rad} \]

vorläufige Wirklänge des Zahnriemens
\[L_v = 2 * e_v * \cos(\alpha_v[\text{Grad}]) + \frac{\pi}{2} * (d_k + d_g) + \alpha_v[\text{Rad}] * (d_g - d_k) = 1766,97 \text{ mm} \]

Anzahl der Riemenzähne
\[X_{err} = \frac{L_v}{p} = 176,7 \]

gewählt \(X = \text{GEW("Hülltriebe/SYNRL";X;Typ=Type)} = 188 \)

Wirklänge Zahnriemen
\[L = X * p = 1880,0 \text{ mm} \]

Kennwert \(f_1 = \)
\[\frac{X * p * \pi}{4} * (d_k + d_g) = 308,75 \text{ mm} \]

Kennwert \(f_2 = \)
\[\frac{(d_g - d_k)^2}{8} = 6029,67 \text{ mm}^2 \]

Achsabstand \(e = \)
\[f_1 * \sqrt{f_1^2 - f_2} = 607,58 \text{ mm} \]
Trumneigungswinkel
\[\alpha_{\text{Grad}} = \arcsin \left(\frac{d_g - d_k}{2 \times e} \right) = 10,41^\circ \]
\[\alpha_{\text{Rad}} = \alpha_{\text{Grad}} \times \frac{\pi}{180} = 0,1817 \text{ rad} \]

Umschlingungswinkel kleine Scheibe
\[\beta_{\text{Grad}} = 180 - 2 \times \alpha_{\text{Grad}} = 159,18^\circ \]
\[\beta_{\text{Rad}} = \beta_{\text{Grad}} \times \frac{\pi}{180} = 2,78 \text{ rad} \]

Eingriffzähnezahl
\[z_{e,v} = \frac{z_k \times \beta_{\text{Grad}}}{360} = 13,27 \]
Die Eingriffzähnezahl \(z_{e,v} \) ist auf eine ganze Zahl nach unten zu runden und \(z_e \) darf bei der Berechnung der Antriebe nicht größer als 15 sein.

Kontrolle: \(\frac{z_e}{15} \leq 1 \)

Ermittlung des Belastungsfaktors für Zahnriemen \(C_B \)

Gewerk \(Ge \) = GEW("Hülltriebe/BF_ZR";Ge;) = Werkzeugmaschinen
Maschinentyp \(M_{\text{Typ}} \) = GEW("Hülltriebe/BF_ZR";Ma;Ge = Ge;) = Bohr- u. Schleifmaschinen
Motorengruppe
\(A \) = Elektromotoren mit niedrigem Anlaufmoment (bis 1,5 * Nennmoment)
\(B \) = Wechsel- und Drehmotoren mit normalem Anlaufmoment (1,5 - 2,5 * Nennmoment)
\(C \) = Wechsel- und Drehmotoren mit hohem Anlaufmoment (über 2,5 * Nennmoment)

Betriebsdauergruppen
\(B_G \) = GEW("Hülltriebe/BF_ZR";BGr;) = bis 10 Std/Tag

Belastungsfaktoren für Zahnriemen \(C_B \) nach Motoren- und Betriebsdauergruppen
\[C_B = \text{TAB("Hülltriebe/BF_ZR";Ma=M_{\text{Typ}};Ge=Ge;MGr=MG;BGr=BG)} = 1,30 \]

spezifische Nennleistung \(P_N \) = \(P_N = 205,00 \text{ W/cm} \)
erforderliche Riemenbreite \(b_{\text{erf}} = \frac{P \times 10^3 \times C_B}{z_e \times P_N} \) = 2,63 cm

gewählte Riemenbreite
\(b = \text{GEW("Hülltriebe/SYNSTB";b; b \geq (b_{\text{erf}} \times 10); Typ = Type)/10} = 3,20 \text{ cm} \)

Riemengeschwindigkeit \(v = \frac{d_k \times \pi \times n_a}{(60 \times 10^3)} = 7,50 \text{ m/s} \)

zul. Zugkraft des Riemens je cm Riemenbreite
\(F_N = \text{TAB("Hülltriebe/SYNABM";F_N ; Typ = Type)} = 720 \text{ N/cm} \)

Zugkraft \(F = \frac{P \times 10^3 \times v}{10} = 720,00 \text{ N} \)
Achskraft \(F_W = C_B \times F = 936,00 \text{ N} \)

zul. Riemenzugkraft \(F_{\text{zul}} = \frac{F_N \times b}{C_B} = 1772,31 \text{ N} \)

Nachweis
\(\frac{F}{F_{\text{zul}}} = 0.41 \leq 1 \)
Ermittlung der Wellenbelastung eines Riementriebs

Eingabewerte:
- Umschlingungswinkel $\beta_1 = 72,00 \, ^\circ$
- Reibzahl Scheibe/Riemen $\mu = 0,55$
- Zu übertragende Umfangkraft $F = 1000,00 \, \text{N}$
- Rillenwinkel $\alpha = 36,00 \, ^\circ$
- Riemensatz $R_{\text{Art}} = \text{GEW("Hülltriebe/Abfrage";RA;)} = \text{Keilriemen}$
- $R_{\text{Art}} = \text{TAB("Hülltriebe/Abfrage";Wert;RA=R_{\text{Art}})} = 1$

Berechnung:
- theoretischer Keilreibwert:

 $\mu' = \frac{\mu}{\sin \left(\frac{\alpha}{2} \right)} = 1,780$

 $\mu = \text{WENN}(\text{Art}=1; \mu'; \mu) = 1,780$

- Kraftverhältnis für $\beta = 180^\circ$:

 $h_1 = \frac{\pi \cdot 180}{180} \cdot \frac{\mu' \cdot 180}{180} = 5,592$

 $m_{180} = 2,7183 \cdot h_1 = 268,282$

- Ausbeute für $\beta = 180^\circ$:

 $\kappa_{180} = \frac{m_{180} \cdot 1}{m_{180}} = 0,996$
Kraftverhältnis für β_1:

Hilfswert $h_2 = \mu \beta_1 \frac{\pi}{180}$

das Turmkraftverhältnis:

\[
m = \frac{2.7183 \cdot h_2}{9.365}
\]

die Ausbeute:

\[
\kappa = \frac{m - 1}{m} = 0.893
\]

der Winkelfaktor:

\[
c_1 = \frac{\kappa}{\kappa_{180}} = 0.897
\]

Das Verhältnis von Wellenkraft F_w zur Umfangskraft F:

\[
k = \sqrt{\frac{m^2 + 1 - 2m \cos(\beta_1)}{m - 1}} = 1.089
\]

Ergebnisse:

Zugkraft im Lasttrum:

\[
F_1 = \frac{F}{\kappa} = 1119.82 \text{ N}
\]

Zugkraft im Leertrum:

\[
F_2 = \frac{F_1}{m} = 119.58 \text{ N}
\]

Wellenbelastung (Betriebszustand):

\[
F_w = F \cdot k = 1089.00 \text{ N}
\]
Berechnung von Axiallagern

Belastung:

Lagerkraft \(F = 2220 \text{ kN} \)
Betriebsdrehzahl \(n = 320,0 \text{ min}^{-1} \)
konstant und stationäre Betrieb

System:

Wahl der Lagerart Ringspurlager oder Segmentspurlager:
\[
\text{Lager} = \text{GEW(“Lager/Abf”;Lg;)} = \text{Segmentspurlager}
\]
\[
\text{Lg} = \text{WENN(Lager =“Ringspurlager”; 1; 2)} = 2
\]

Abmessungen Ringspurlager

\[
\begin{align*}
\text{Außendurchmesser } d_{a,R} &= 0,0 \text{ mm} \\
\text{Innendurchmesser } d_{i,R} &= 0,0 \text{ mm} \\
\text{mittlerer Durchmesser } d_{m,R} &= 0,5 \times (d_{a,R} + d_{i,R}) = 0,0 \text{ mm} \\
\text{Lagerbreite } b_R &= \frac{(d_{a,R} - d_{i,R})}{2} = 0,0 \text{ mm} \\
\text{Anzahl der Keilflächen } z_R &= 0 \\
\text{Keillänge } l_R &= 0,0 \text{ mm}
\end{align*}
\]

Abmessungen Segmentspurlager

\[
\begin{align*}
\text{Außendurchmesser Tragring } d_{a,S} &= 1480 \text{ mm} \\
\text{Innendurchmesser Tragring } d_{i,S} &= 860 \text{ mm} \\
\text{mittlerer Durchmesser Tragring } d_{m,S} &= 0,5 \times (d_{a,S} + d_{i,S}) = 1170 \text{ mm} \\
\text{Die Anzahl der Segmente } z_S &= 12 \\
\text{Segmentlänge } l_S &= 210 \\
\text{Segmentbreite } b_S &= \frac{(d_{a,S} - d_{i,S})}{2} = 310 \text{ mm}
\end{align*}
\]
wärmeabführende Oberfläche des Lagergehäuses
\[A = 4,50 \text{ m}^2 \]
Lagerbreite \(b_0 \) = Wenn(Lager = "Ringspurlager"; \(b_R \); \(b_S \)) = 310,00 mm
Anzahl der Segmente bzw. Keilflächen
\[z_0 = \text{Wenn(Lager = "Ringspurlager"; } z_R ; z_S) = 12 \]
Keil- bzw. Segmentlänge
\[l = \text{Wenn(Lager = "Ringspurlager"; } l_R ; l_S) = 210,00 \text{ mm} \]

Schmierstoff/ Material:

Welche Schmierart liegt vor?

Abfrage = GEW("Lager/Abf";SA;) = Schmieröl
Schmierstoff S = Wenn(Abfrage = "Wasser";1 ;2) = 2
Dichte Schmieröl
\[\rho = \text{Wenn(S = 2 ; 900; 1000)} = 900 \text{ kg/m}^3 \]
spezifische Wärme
\[c = \text{Wenn(S = 2; 2000; 4200)} = 2000 \text{ J/kgK} \]
Temperatur der Umgebungsluft im Normalfall \(t_a = 20^\circ \)
Umgebungstemperatur \(t_a = 20^\circ \)
relativer Schmierfilmdicke bzw. Keilspaltverhältnis
\[\delta = 0,80 \]
Dynamische Viskosität des Schmieröls im betriebswarmen Zustand
\[\eta = 0,017 \text{ Pa s} \]
relativer Schmierfilmdicke bzw. Keilspaltverhältnis
\[\delta = 0,80 \]
Lagerhöhe \(\varepsilon = \frac{l}{b_0} \) = 0,677
Tragzahl \(S_{0,ax} = 0,063 \)
kleinste Schmierfilmdicke \(h_{0,lim} = 16,00 \mu \text{m} \)
Reibwert K bei Axial-Gleitlagern (nach VDI 2204)
Reibwert K = 2,87

Gleitgeschwindigkeit:

Gleitgeschwindigkeit
\[u = \text{Wenn(Lg=1; } d_{m,R} * 10^{-3} \times \frac{n}{60} ; d_{m,S} * 10^{-3} \times \frac{n}{60}) = 19,604 \text{ m/s} \]
Winkelgeschwindigkeit \(w = 2 \times \frac{n}{60} = 33,51 \text{ s}^{-1} \)
gedrückte Fläche
\[A_L = \text{Wenn(Lg=1; } \left(d_{a,R}^2 - d_{l,R}^2 \right) \times \frac{\pi}{4} ; z_0 \times b_0 \times l) = 781200 \text{ mm}^2 \]

spezifische Lagerbelastung \(p_m = \frac{F \times 10^3}{A_L} = 2,84 \text{ N/mm}^2 \)
Ermittlung der Kühlungsart. Unterscheidung zwischen Konvektion und Druckschmierung:

minimale Schmierfilmdicke

\[h_0 = \sqrt{\frac{\eta \cdot u \cdot b_0 \cdot 10^{-3}}{p_m \cdot 10^6 \cdot S_{0,ax}}} \cdot 10^6 = 47,87 \ \mu m \]

Kontrolle, ob die Schmierfilmdicke eingehalten werden kann.

\[\frac{h_0}{h_{0,\text{lim}}} = 2,99 > 1 \]

Reibungszahl \(\mu = \frac{K \cdot h_0 \cdot 10^{-3}}{b_0 \sqrt{S_{0,ax}}} \]

Bei Wärmeabfuhr durch Konvektion drucklos geschierte Lager gilt: \(P_0 = P_A = P_f \)

Reibleistung \(P_0 = F \cdot \mu \cdot u = 77,03 \ kW \)

Wärmeübergangszahl zwischen der Oberfläche des Lagergehäuses und der Umgebungsluft bei leicht bewegter Luft beträgt im Normalfall: \(k = 15 \ldots 20 \ W/m^2K \)

Wärmeübergangszahl \(k = 20,00 \ W/m^2K \)

errechnete Betriebstemperatur \(t_B = \frac{P_0 \cdot 10^3}{k \cdot A} + t_a = 876 \ °C \)

Die zulässige Temperatur an den Gleitflächen des betriebswarmen Lagers \(t_{Bzul} \) sollte in der Regel 70 - 90 °C nicht überschreiten.

gewählt \(t_{Bzul} = 90 \ °C \)

Kontrolle ob die Lagertemperatur bei druckloser Schmierung zulässig ist

\[\frac{t_{Bzul}}{t_B} = 9,73 \leq 1 \]

Beim Überschreiten der Lagertemperaturobergrenze \(t_{Bzul} \) empfiehlt sich eine Ölschmierung mit Ölrückkühlung.

Iterative Lösung ist auch noch möglich, wenn der Wert nicht allzu hoch ist.

Wärmeabfuhr durch den Schmierstoff

angenommener Schmierstoff Austrittstemperatur \(t_{2,0} = 80,00 \ °C \)

Die Differenz der Schmierstoffein- und Schmierstoffaustrittstemperatur darf nicht beliebig hoch angenommen werden, weil der Schmierstoff Zeit braucht, die Wärme aufzunehmen. Deshalb ist mit \(t_{2,0} - t_1 = 20 \ °C \) zu rechnen.

Temperaturdifferenz \(t_3 = 20,00 \ °C \)

Schmierstoff Eintrittstemperatur \(t_1 = t_{2,0} - t_A = 60,00 \ °C \)

mittlere Schmierstofftemperatur \(t_m = \frac{(t_{2,0} + t_1)}{2} = 70,00 \ °C \)

angenommener effektive Schmierfilmeintrittstemperatur \(t_{\text{eff}} = t_m = 70,00 \ °C \)

Durchsatzfaktor \(\varphi = 0,70 \)

Wahl Schmieröl : ISO VG 100

dynamische Viskosität \(\eta \) in Abhängigkeit von der Temperatur \(t \) für Schmieröl (nach DIN 51519)

\(\eta_2 = 24,00 \ mPa \cdot s \)

relative Schmierfilmdicke

\(\delta_2 = 0,80 \)

Lagerverhältnis \(\varepsilon = \frac{l}{b_0} = 0,677 \)

Tragzahl \(S_{0,ax} = 0,063 \)
minimale Schmierfilmdicke
\[h_{02} = \sqrt{\frac{S_{0,ax2} \cdot \eta_2 \cdot 10^{-3} \cdot u \cdot b_0 \cdot 10^{-3}}{p_m \cdot 10^6}} \cdot 10^6 = 56,88 \mu m \]

kleinste Schmierfilmdicke
\[d_{m,0} = \text{WENN}(Lg=1; d_{m,R} : d_{m,S}) \]
\[h_{02\text{min}} = \text{TAB}("Lager/BWSÖl"; h_{0lim}; d_m = d_{m,0}) \cdot 10^3 \]
\[= 16,00 \mu m \]

Nachweis Schmierfilmdicke
\[h_{02}/h_{02\text{min}} = 3,56 \geq 1 \]

Reibungszahl \(\mu_2 = \frac{K \cdot h_{02} \cdot 10^{-3}}{b_0 \cdot \sqrt{S_{0,ax2}}} \]
\[= 0,00210 \]

Reibleistung \(P_f = F \cdot \mu_2 \cdot u \cdot 10^{3} \)
\[= 91393,85 W \]

gesamter Wärmestrom infolge Reibung

gesamter Wärmestrom \(P_0 = P_f \)
\[= 91393,85 W \]

Zur Aufrechthaltung der Flüssigkeitsreibung erforderlicher Schmieröldurchsatz infolge Eigendruckentwicklung
\[Q_1 = (\varphi \cdot b_0 \cdot 10^{-3} \cdot h_{02} \cdot 10^{-3} \cdot u \cdot z_0) \cdot 60 \]
\[= 174,22 l/min \]

Gesamtschmieröldurchsatz, ohne Konvektion
\[Q_{\text{nonK}} = \frac{P_0}{\rho \cdot c \cdot 2 \cdot (t_{2,0} - t_m)} \cdot 10^3 \cdot 60 \]
\[= 152,32 l/min \]

Gesamtschmieröldurchsatz, mit Konvektion
\[Q_K = \frac{P_0 - k \cdot A \cdot (t_m - t_a)}{\rho \cdot c \cdot 2 \cdot (t_{2,0} - t_m)} \cdot 10^3 \cdot 60 \]
\[= 144,82 l/min \]

Das Tragöl zur Kühlung reicht aus, wenn \(Q_K \leq Q_1 \) ist.
\[Q_K/Q_1 = 0,83 \leq 1 \]

Lage der Kippsegmente
Die größte Tragfähigkeit ergibt sich bei \(\delta = 0,8 \) und \(\varepsilon = 0,42 \)
gew. \(\delta = 0,80 \)
gew. \(\varepsilon = 0,42 \)

Keilhöhe \(H_2 = h_{02}/\delta \)
\[= 71,10 \mu m \]
geometrisches Mittel aus Außen- und Innendurchmesser des Lagers \(d_s \)
\[d_s = \sqrt[0,5]{(d_{a,S}^2 + d_{i,S}^2)} \]
\[= 1210,37 mm \]

Unterstützungsabstand \(x = \varepsilon \cdot d_s / d_{m,S} \)
\[= 91,24 mm \]

Übergangsdrehzahl und Mindestdrehzahl
Schmierfilmdicke \(h_{\geq} \) beim Übergang in die Flüssigkeitsreibung
\[h_{\geq} = \text{TAB}("Lager/BWSÖl"; h_{\geq}; d_m = d_{m,0}) \cdot 10^3 \]
\[= 6,00 \mu m \]

Übergangsdrehzahl \(n_{\geq} = \left(\frac{h_{\geq}}{h_{02}} \right)^2 \cdot n \]
\[= 3,56 \text{ min}^{-1} \]

Mindestdrehzahl \(n_{\text{min}} = \left(\frac{h_{02\text{min}}}{h_{02}} \right)^2 \cdot n \]
\[= 25,32 \text{ min}^{-1} \]
Radialgleitlager

Lagerinnendurchmesser \(d_L = 125,00 \text{ mm} \)
Toleranz \(ES = 0,040 \text{ mm} \)
Toleranz \(es = 0,000 \text{ mm} \)
tragende Lagerbreite \(b = 120,00 \text{ mm} \)
Toleranz \(EI = 0,000 \text{ mm} \)
Toleranz \(ei = -0,040 \text{ mm} \)
Wellendurchmesser \(d_w = 124,84 \text{ mm} \)
Wellendrehzahl \(n_w = 500,00 \text{ 1/min} \)
Wärmeabgebende Oberfläche \(A_G = 0,40 \text{ m²} \)

Belastung:
Lagerkraft \(F = 29,00 \text{ kN} \)

Material:
Gleitlagerwerkstoff: Sn-Legierung
Welle: E335
Wärmeübergangszahl \(\alpha = 20,00 \text{ W/(m²°C)} \)
Schmierstoff: ISO VG 46
nach DIN 51 519
Höchstzulässige spezifische Lagerbelastung \(p_{Lzul} = 5,00 \text{ N/mm²} \)
zul. Lagertemperatur (Eigenschmierung) \(\vartheta_{zul} = 90,00 \text{ °C} \)

Berechnung:
spezifische Lagerbelastung \(p_L = \frac{F \cdot 10^3}{(b \cdot d_L)} = 1,93 \text{ N/mm²} \)

\[\frac{p_L}{p_{Lzul}} = 0,39 < 1 \]

maximales Einbautagerspiel:
\[s_{E_{\text{max}}} = (d_L + ES) - (d_w + ei) = 0,240 \text{ mm} \]
\[s_{E_{\text{min}}} = (d_L + EI) - (d_w + es) = 0,160 \text{ mm} \]
mittleres relatives Betriebslagerspiel:

\[\psi_B = \frac{s_{\text{Emax}} + s_{\text{Emin}}}{2 \cdot d_L} = 1,600 \cdot 10^{-3} \]

Umgebungslufttemperatur \(\vartheta_U = 20,00 \, ^\circ\text{C} \)

Richttemperatur \(\vartheta_0 = 40,00 \, ^\circ\text{C} \)

⇒ effektive dynamische Viskosität \(\eta_{\text{eff}} = 42,00 \, \text{m Pa s} \)

Winkelgeschwindigkeit \(\omega_{\text{eff}} = 2 \cdot \pi \cdot n_w / 60 = 52,36 \, \text{1/s} \)

Sommerfeldzahl \(S_0 = \frac{p_L \cdot \psi_B^2}{\eta_{\text{eff}} \cdot 10^{-9} \cdot \omega_{\text{eff}}} = 2,25 \)

Verhältnis: \(b / d_L = 0,96 \)

abgelesen aus Tabellen:
⇒ relative Exzenrität \(\varepsilon = 0,74 \)

Verlagerungswinkel \(\beta = 42,00 \, ^\circ \)

Reibungszahl \(\mu = 2,2 \cdot \psi_B = 3,52 \cdot 10^{-3} \)

Wellenumfangsgeschwindigkeit:

\(u_w = 0,5 \cdot d_w \cdot \omega_{\text{eff}} \cdot 10^{-3} = 3,27 \, \text{m/s} \)

Reibungsverlustleistung:

\(P_R = \mu \cdot F \cdot 10^3 \cdot u_w = 333,80 \, \text{W} \)

Natürliche Kühlung:

Lagertemperatur \(\vartheta_L = \vartheta_U + \frac{\mu \cdot F \cdot 10^3 \cdot u_w}{\alpha \cdot A_G} = 61,73 \, ^\circ\text{C} \)

ABS(\(\vartheta_L - \vartheta_0 \)) = 21,73 < 2 \, ^\circ\text{C} \)

Iterative Lösung, wenn ABS(\(\vartheta_L - \vartheta_0 \)) > 2\, ^\circ\text{C} ist.

1. Iteration

\(\vartheta_{\text{neu}} = \frac{\vartheta_0 + \vartheta_L}{2} = 50,87 \, ^\circ\text{C} \)

⇒ effektive dynamische Viskosität \(\eta_{\text{eff}} = 25,00 \, \text{m Pa s} \)

Sommerfeldzahl \(S_0 = \frac{p_L \cdot \psi_B^2}{\eta_{\text{eff}} \cdot 10^{-9} \cdot \omega_{\text{eff}}} = 3,77 \)

abgelesen aus Tabellen:
⇒ relative Exzenrität \(\varepsilon = 0,83 \)

Verlagerungswinkel \(\beta = 35,00 \, ^\circ \)

Reibungszahl \(\mu = 1,70 \cdot \psi_B = 2,72 \cdot 10^{-3} \)

Wellenumfangsgeschwindigkeit:

\(u_w = 0,5 \cdot d_w \cdot \omega_{\text{eff}} \cdot 10^{-3} = 3,27 \, \text{m/s} \)

Reibungsverlustleistung:

\(P_R = \mu \cdot F \cdot 10^3 \cdot u_w = 257,94 \, \text{W} \)
Natürliche Kühlung:

Lagertemperatur $\vartheta_L = \vartheta_U + \frac{\mu F \cdot 10^3 \cdot u_w}{\alpha \cdot A_G} = 52,24 \, ^\circ C$

$\text{ABS}(\vartheta_L - \vartheta_{0\text{neu}}) = 1,37 < 2 \, ^\circ C$

Nachweis:

$\frac{\vartheta_L}{\vartheta_{zul}} = 0,58 < 1$

Die natürliche Kühlung reicht aus.

kleinste Schmierspalthöhe:

$h_0 = 0,5 \cdot d_L \cdot \psi_B \cdot (1 - \varepsilon) = 0,017 \, \text{mm}$

Schmierstoffdurchsatz:

$V'_{Drel} = \frac{\frac{b}{d_L} \cdot 0,223 \cdot \left(\frac{b}{d_L}\right)^3}{4} \cdot \varepsilon = 0,16$

$V_D = V'_{Drel} \cdot (d_L \cdot 10^{-1})^3 \cdot \psi_B \cdot \omega_{eff} \cdot 60/10^3 = 1,571 \, \text{dm}^3/\text{min}$
Rillenkugellager

![Rillenkugellager Diagram](image)

Vorwerte:
- Art = Rillenkugellager
- Radialkraft $F_r = 5,00 \text{ kN}$
- Axialkraft $F_a = 1,80 \text{ kN}$
- Umdrehungen $n = 250,00 \text{ 1/min}$
- erforderliche Lebensdauer $L = 10000,00 \text{ h}$
- Lebensdauerexponent $p = 3,00$
- Lagerreihe LR = GEW("Lager/Werte";LR; Art=Art) = 62
- Durchmesser $d = GEW("Lager/Werte";d; Art=Art; LR=LR) = 60,00 \text{ mm}$

Berechnung:
- statische Tragzahl:
 \[
 C_0 = \text{TAB("Lager/Werte"; C_0; Art=Art; LR=LR; d=d)} = 36,00 \text{ kN}
 \]
- dynamische Tragzahl:
 \[
 C = \text{TAB("Lager/Werte"; C; Art=Art; LR=LR; d=d)} = 52,00 \text{ kN}
 \]
- $F_a / C_0 = 0,05$
- $e = \text{TAB("Lager/Rilikenl"; e; v=F_a/C_0)} = 0,25$
- $F_a / F_r = 0,36$
- $\nu_2 = F_a / F_r / e = 1,44$
- $X = \text{TAB("Lager/Rilikenl"; X; \nu_2 > \nu_2; v=F_a / C_0)} = 0,56$
- $Y = \text{TAB("Lager/Rilikenl"; Y; \nu_2 > \nu_2; v=F_a / C_0)} = 1,73$

- äquivalente Lagerbelastung:
 \[
 P = X \cdot F_r + Y \cdot F_a = 5,91 \text{ kN}
 \]

Nominelle Lebensdauer in Betriebsstunden:
\[
L_{10} = \left(\frac{C}{P} \right)^p = 681,16 \text{ h}
\]
\[
L_{10h} = \frac{L_{10} \cdot 10^6}{60 \cdot n} = 45411 \text{ h}
\]
\[
\frac{L}{L_{10h}} = 0,22 < 1
\]
Wälzgelagerte Welle

System:

<table>
<thead>
<tr>
<th>Größe</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lagerart Art</td>
<td>Zylinderrollenlager einreihig</td>
</tr>
<tr>
<td>Zapfendurchmesser d_1</td>
<td>(50,00 \text{ mm})</td>
</tr>
<tr>
<td>Wellendurchmesser d</td>
<td>(60,00 \text{ mm})</td>
</tr>
<tr>
<td>Lagerabstand l</td>
<td>(305,00 \text{ mm})</td>
</tr>
<tr>
<td>Kraftabstand l_1</td>
<td>(115,00 \text{ mm})</td>
</tr>
<tr>
<td>Kraftabstand l_2</td>
<td>(190,00 \text{ mm})</td>
</tr>
<tr>
<td>Wellendrehzahl n</td>
<td>(315,00 \text{ 1/min})</td>
</tr>
<tr>
<td>Lebensdauerexponent p</td>
<td>(10/3 = 3,33)</td>
</tr>
<tr>
<td>gew Lebensdauer L_{10h}</td>
<td>(20000,00 \text{ h})</td>
</tr>
</tbody>
</table>

Belastung:

<table>
<thead>
<tr>
<th>Größe</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kraft F</td>
<td>(10,60 \text{ kN})</td>
</tr>
</tbody>
</table>

Berechnung:

\[
F_A = F \cdot \frac{l_2}{l} = 6,60 \text{ kN}
\]

\[
F_B = F - F_A = 4,00 \text{ kN}
\]

\[
P = \text{MAX}(F_A; F_B) = 6,60 \text{ kN}
\]

Drehzahlfaktor

\[
f_n = \sqrt[3]{\frac{100}{n^p}} = 0,51
\]

Lebensdauerfaktor

\[
f_L = \sqrt[3]{\frac{L_{10h}}{500}} = 3,03
\]

erforderliche dynamische Tragzahl:

\[
C = P \cdot \frac{f_L}{f_n} = 39,21 \text{ kN}
\]

gew. Bez = \(\text{TAB("Lager/Werte"; Bez; Art=Art; d=d_1; C>C)}\) = FAG.NU210E

mit C = \(\text{TAB("Lager/Werte"; C; Bez=Bez)}\) = \(64,00 \text{ kN}\)

gewählt:

<table>
<thead>
<tr>
<th>Lager</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zylinderrollenlager DIN 5412-NU210E mit C = 64 kN als Loslager</td>
<td></td>
</tr>
<tr>
<td>Zylinderrollenlager DIN 5412-NUP210E als Festlager</td>
<td></td>
</tr>
</tbody>
</table>
Dauer- und Gestaltfestigkeit

Werkstoff:
Stahl = GEW("Material/Werkstoff"; Bez;) = S275JR

Werkstoff: Baustähle (σ_S), Vergütungsstähle, Einsatzstähle blindgehärtet
WSB = GEW("Material/Abf"; WA;) = Baustähle
Art = TAB("Material/Abf"; Wert; WA=WSB) = 1
Mittelspannung σ_m = 250 N/mm²

Zugfestigkeit
$R_mN = TAB("Material/Werkstoff"; R_mN; Bez=Stahl)$ = 430 N/mm²
Streckgrenze
$R_eN = TAB("Material/Werkstoff"; R_eN; Bez=Stahl)$ = 275 N/mm²

Beanspruchung:
Zug/Druck 1, Biegung 2, Torsion 3:
Beanspruchungsart BArt = GEW("Material/Abf"; BS;) = Biegung
BA = TAB("Material/Abf"; f; BS=BArt) = 2
κ = 0,00

System:
Rautiefe R_z = 12,00 mm
Bauteildurchmesser d = 100,00 mm
Kerbwirkungszahl für Biegung β_k = 2,50

Berechnung:
maßgebender Faktor $k_1 =$ WENN(BA=1; 0,4; WENN(BA=2; 0,5; 0,3)) = 0,50
maßgebender Faktor $k_2 =$ WENN(BA=1; 1; WENN(BA=2; 1,2; 0,69)) = 1,20

Lastfall 1 Fließgrenze $\kappa = 1$:
$FG = k_2 \cdot k_1 R_eN$ = 330,00 N/mm²

Lastfall 2 Schwellfestigkeit $\kappa = 0$:
$SF = \text{MIN}(R_mN \cdot k_1; FG)$ = 322,50 N/mm²

Lastfall 3 Wechselfestigkeit $\kappa = -1$:
$WF = \text{MIN}(R_mN \cdot k_1 \cdot 10^{-6}; FG)$ = 215,00 N/mm²
für das Spannungsverhältnis \(-1 < \kappa < 2\):

\[
\begin{align*}
\text{Baustähle } K_B & = 1 - 0.26 \cdot \log \left(\min(\max(d;32);300) / 32 \right) = 0.871 \\
\text{Vergütungsstähle } K_V & = 1 - 0.26 \cdot \log \left(\min(\max(d;16);300) / 16 \right) = 0.793 \\
\text{Einsatzstähle } K_E & = 1 - 0.41 \cdot \log \left(\min(\max(d;11);300) / 11 \right) = 0.607 \\
K_I & = \begin{cases}
1, & \text{WENN} (\text{Art}=1; K_B) \\
\text{WENN} (\text{Art}=2; K_V; K_E), & \text{WENN} (\text{Art}=2; K_V; K_E)
\end{cases} = 0.871 \\
\text{Hilfsgröße } h_1 & = \frac{1 \cdot k_1 \cdot \sigma_m + WF}{1 - \frac{1}{2}} = 381.67 \text{ N/mm}^2
\end{align*}
\]

Bauteilgeometrie:

wird die obere Grenzspannung:

\[
\begin{align*}
\sigma_{OK} & = K_I \cdot \min(\text{FG}; \text{SF}) = 280.90 \text{ N/mm}^2 \\
\sigma_{OM} & = \min(h_1; \text{FG}) \cdot K_I = 287.43 \text{ N/mm}^2
\end{align*}
\]

wird die Ausschlagfestigkeit:

\[
\begin{align*}
\sigma_{AK} & = \sigma_{OK} / 2 \cdot (1 - \kappa) = 140.45 \text{ N/mm}^2 \\
\sigma_{AM} & = \sigma_{OM} - \sigma_m = 37.43 \text{ N/mm}^2 > 0
\end{align*}
\]

Gestaltfestigkeitswerte:

geometrischer Größeneinflussfaktor:

\[
K_g = 1 - 0.2 \cdot \log \left(\min(\max(d;150);150) / 7.5 \right) / \log(20) = 0.827
\]

maßgebender geometrischer Größenbeiwert:

\[
K_g = \begin{cases}
1, & \text{WENN} (d<8; 1) \\
\text{WENN} (K_g \leq 0.8; 0.8; K_g), & \text{WENN} (K_g \leq 0.8; 0.8; K_g)
\end{cases} = 0.827
\]

Oberflächenbeiwert:

Zug/Druck/Biegung \(K_{ozdb} \) = \(1-0.22\cdot\log(R_z)\cdot(\log(R_mN/20)-1) \) = 0.921

Torsion \(K_o \) = 0,575 \cdot \(K_{ozdb} \) + 0,425 = 0.955

maßgebender Oberflächenbeiwert:

\[
K_o = \max(\text{WENN} (\text{BA}=3; K_o; K_{ozdb}); 0.5) = 0.921
\]

Konstruktionsfaktor \(k_f \) = \[
\frac{\beta_k}{K_g K_o} + 1 = 3.109
\]

wird die obere Grenzspannung:

\[
\sigma_{GO} = \sigma_{OK} / k_f = 90.35 \text{ N/mm}^2
\]

wird die Ausschlagfestigkeit:

\[
\sigma_{GA} = \sigma_{AK} / k_f = 45.18 \text{ N/mm}^2
\]

wird die obere Grenzspannung:

\[
\sigma_{GOM} = \sigma_{OM} / k_f = 92.45 \text{ N/mm}^2
\]

wird die Ausschlagfestigkeit:

\[
\sigma_{GAm} = \sigma_{AM} / k_f = 12.04 \text{ N/mm}^2
\]
Dauerfestigkeitsnachweis einer Welle

System:
aufzunehmendes Drehmoment $T = 300 \text{ Nm}$
aufzunehmendes Biegemoment $M = 385 \text{ Nm}$
Betriebsfaktor $c_B = 1.20$

Querschnittstyp Typ: 4
Durchmesser $D = 45 \text{ mm}$
Durchmesser $d = 35 \text{ mm}$

Werkstoff WS = St 50
Baustähle 1; Vergütungsstähle 2; Einsatzstähle 3:
Art = 1
Belastung: schwellend 1; wechseln 2
Lastfall Torsion $L_{FT} = 1$
Lastfall Torsion $L_{FB} = 1$
Rautiefe $R_z = 16.00 \text{ mm}$
Kerbwirkungszahl für Biegung $\beta_k = 1.50$

Berechnung:
Widerstandsmomente:
$W_1 = \pi / 32 * D^4 = 8946 \text{ mm}^3$
$W_{1p} = \pi / 16 * D^3 = 17892 \text{ mm}^3$
$W_2 = 0.012 * (D + d)^3 = 6144 \text{ mm}^3$
$W_{2p} = \pi / 16 * d^3 = 8418 \text{ mm}^3$
$W_3 = \pi / 32 * (D^4 - d^4) / D = 5672 \text{ mm}^3$
$W_{3p} = \pi / 16 * (D^4 - d^4) / D = 11345 \text{ mm}^3$
$W_4 = 0.012 * (D + d)^3 = 6144 \text{ mm}^3$
$W_{4p} = 0.024 * (D + d)^3 = 12288 \text{ mm}^3$

$W = \text{WENN(Typ}=1; W_1; \text{WENN(Typ}=2; W_2; \text{WENN(Typ}=3; W_3; W_4))) = 6144 \text{ mm}^3$

$W_p = \text{WENN(Typ}=1; W_{1p}; \text{WENN(Typ}=2; W_{2p}; \text{WENN(Typ}=3; W_{3p}; W_{4p}))) = 12288 \text{ mm}^3$
vorhandene Biegespannung:
\[\sigma_b = \frac{M \cdot 10^3 \cdot c_B}{W} \]
= 75,20 N/mm²

vorhandene Torsionsspannung:
\[\tau_t = \frac{T \cdot 10^3 \cdot c_B}{W_p} \]
= 29,30 N/mm²

Anstrengungsverhältnis:
\[\alpha_0 = \text{WENN}(L_F_T=1; 0,7; 1) \]
= 0,70

vorhandene Vergleichsspannung:
\[\sigma_v = \sqrt{\sigma_b^2 + 3 \cdot (\alpha_0 \cdot \tau_t)^2} \]
= 83,17 N/mm²

Ermittlung der Gestaltfestigkeit:
\[R_m = \text{TAB("Wellen/Festigk"; R_m; WS=WS)} \]
= 470,00 N/mm²
\[R_e = \text{TAB("Wellen/Festigk"; R_e; WS=WS)} \]
= 275,00 N/mm²

maßgebend \(D = \text{WENN(Typ=3; D; d)} \)
= 35

\(h_1 = \text{WENN(T=0; L_F_B; WENN(M=0; L_F_T; L_F_B)}) \)
= 1

\(h_2 = \text{WENN(h1=1; 0; -0,9999)} \)
= 0,0000

\(h_3 = \text{WENN(T>0; WENN(M=0; 3; WENN(M>0; 2; 0)); 2)} \)
= 2

Baustahl \(k_{1b} = \text{WENN(h3=1; 0,45; WENN(h3=2; 0,5; WENN(h3=3; 0,29; 0))}) \)
= 0,50

Vergütungstahl \(k_{1v} = \text{WENN(h3=1; 0,45; WENN(h3=2; 0,48; WENN(h3=3; 0,29; 0))}) \)
= 0,48

Einsatzstahl \(k_{1e} = \text{WENN(h3=1; 0,4; WENN(h3=2; 0,43; WENN(h3=3; 0,23; 0))}) \)
= 0,43

maßgebend \(k_1 = \text{WENN(Art=1; k_{1b}; WENN(Art=2; k_{1v}; k_{1e})}) \)
= 0,50

Baustahl \(k_{2b} = \text{WENN(h3=1; 1; WENN(h3=2; 1,28; WENN(h3=3; 0,69; 0))}) \)
= 1,28

Vergütungstahl \(k_{2v} = \text{WENN(h3=1; 1; WENN(h3=2; 1,2; WENN(h3=3; 0,6; 0))}) \)
= 1,20

Einsatzstahl \(k_{2e} = \text{WENN(h3=1; 1; WENN(h3=2; 1,22; WENN(h3=3; 0,62; 0))}) \)
= 1,22

maßgebend \(k_2 = \text{WENN(Art=1; k_{2b}; WENN(Art=2; k_{2v}; k_{2e})}) \)
= 1,28

\[\sigma_{ox} = \frac{k_1 \cdot R_m}{(1 + h_2) \cdot \left(\frac{1 - k_1}{2 - k_1}\right)} \]
= 353 N/mm²

\[\sigma_{OF} = k_2 \cdot R_e \]
= 352 N/mm²

Dauerfestigkeit:
\[\sigma_0 = \text{MIN}(\sigma_{ox}; \sigma_{OF}) \]
= 352 N/mm²

Zug/Druck/Biegung \(b_{1zdb} = 1-0,22 \cdot \text{LOG}(R_2) \cdot (\text{LOG}(R_m / 20)-1) \)
= 0,902

Torsion \(b_{1t} = 0,575 \cdot b_{1zdb} + 0,425 \)
= 0,944

maßgebender Oberflächenbeiwert:
\[b_1 = \text{MAX(WENN(h3=3; b_{11}; b_{1zdb}); 0,75}) \]
= 0,902

Vergütungsstähle \(K_t = 1-0,25 \cdot \text{LOG}(D/7,5)/\text{LOG}(20) \)
= 0,871

\(K_t = \text{WENN(Art=1; 1; K_t)} \)
= 1,000
geometrischer Größeneinflußfaktor:
Zug $K_{gz} = 1,000$

Biegung Torsion:
$K_g = 1 - 0,2 \times \log(D / 7,5) / \log(20)$
$K_g' = \text{WENN}(h3=1; 1; \text{WENN}(h3=2 \text{ ODER } h3=3; K_g; 0)) = 0,897$

maßgebender geometrischer Größenbeiwort:
$K_g = \text{WENN}(D<8; 1; \text{WENN}(K_g'\leq0,75; 0,75; K_g')) = 0,897$

Formzahlabhängiger Größenbeiwort:
$K_\alpha = \text{WENN}(D<8; 1; 1-0,2 \times \log(\beta_k) \times \log(D / 7,5) / \log(20)) = 0,982$

$b_2 = K_t \times K_g \times K_\alpha = 0,881$

Gesamteinflußgröße:
$\gamma = b_1 \times b_2 / \beta_k = 0,53$

Gestaltfestigkeit:
$\sigma_G = \gamma \times \sigma_o = 187 \text{ N/mm}^2$

vorhandene Sicherheit $\nu_D = \sigma_G / \sigma_v = 2,25 > 1$
Dimensionierung eines Stahlrohres

System:

Volumenstrom \(V = 40 \text{ m}^3/\text{h} \)

Ermittlung der Dichte des Durchflussstoffs

\[
S = \text{GEW("Rohre/KWFG";Stoff;)} = \text{Wasser (1bar)}
\]

Temperatur \(\theta_S \)

\[
\theta_S = \text{GEW("Rohre/KWFG"; \theta ;Stoff=S)} = 10 \text{ °C}
\]

\[
\rho = \text{TAB("Rohre/KWFG"; \rho ;Stoff=S; \theta = \theta_S)} = 999,60 \text{ kg/m}^3
\]

kinematische Viskosität

\[
v = \text{TAB("Rohre/KWFG";v ;Stoff=S; \theta = \theta_S)} = 1,297*10^{-6} \text{ m}^2/\text{s}
\]

Ermittlung Rauigkeit der Rohrinnenwand

Rohrwerkstoff

\[WS = \text{GEW("Rohre/WRau";RWS;)} = \text{Stahl (neu)}\]

Zustand des Rohrwerkstoffs

\[Z = \text{GEW("Rohre/WRau";ZS; RWS =WS)} = \text{nahtlos kalt gezogen}\]

Rauigkeit \(k \)

\[k = \text{TAB("Rohre/WRau";k;RWS =WS; ZS=Z)} = 0,04 \text{ mm}\]

Länge der Rohrleitung \(L = 60,00 \text{ m} \)

Verlustzahl \(\xi = 1,444 \)

Förderhöhe \(\Delta H = 20 \text{ m} \)

Erdbeschleunigung \(g = 9,81 \text{ m/s}^2 \)

einzuhaltende Verlustleistung \(P_v = 0 \text{ W} \)

bei Druckschwankungen ist der Berechnungsdruck \(p = 0 \) zu setzen.

Berechnungsdruck (max. möglicher Innendruck) \(p_B = 0 \text{ bar} \)

max. Druck bei Druckschwankungen \(p_{max} = 250 \text{ bar} \)

min. Druck bei Druckschwankungen \(p_{min} = 200 \text{ bar} \)

Reihe \(Rh = \text{GEW("Rohre/NSIR";Re;)} = \text{Reihe 1} \)
Die unteren genormten Rohrabmessungen gelten nur für nahtlose Stahlrohre.

Außendurchmesser
\[
\begin{align*}
d_a &= \text{GEW}("\text{Rohre/NStR}; d_a : \text{Re} \equiv \text{Rh}) = 88,90 \text{ mm} \\
\text{min.} s &= \text{TAB}("\text{Rohre/NStR}; s_{\text{min}} : d_a = d_a ; \text{Re} \equiv \text{Rh}) = 3,20 \text{ mm} \\
\text{max.} s &= \text{TAB}("\text{Rohre/NStR}; s_{\text{max}} : d_a = d_a ; \text{Re} \equiv \text{Rh}) = 25,00 \text{ mm}
\end{align*}
\]

gewählte Wanddicke sollte zw. min. s und max. s liegen
\[
gew. s = \text{GEW}("\text{Rohre/NStR}; s ; s \geq \text{min.} s ; s \leq \text{max.} s\) = 10,00 \text{ mm}
\]
\[
d_i = d_a - 2 \times s = 68,90 \text{ mm}
\]
\[
\varepsilon = d_a / d_i = 1,29 < 2
\]

Eine Berechnung nach DIN 2413-1 kann nur erfolgen wenn das Verhältnis \(d_a / d_i < 2\) ist.

Bereich I = vorwiegend ruhende Beanspruchung bis 120°C

Bereich II = vorwiegend ruhende Beanspruchung über 120°C

Bereich III = schwellende Beanspruchung bis 120°C

Einteilung in Bereiche Ber = \(\text{GEW}("\text{Rohre/Abf};\text{BR}\) = Bereich III

Stahlrohwerkstoffe:
\[
\begin{align*}
\text{RWS} &= \text{GEW}("\text{Rohre/FestK};\text{WS}\) = \text{St 37.0} \\
\text{Festigkeitskennwert} K &= \text{TAB}("\text{Rohre/FestK}; K; \text{WS= RWS}; T \geq \varTheta_{S}; s = s\) = 235 N/mm² \\
\text{Bruchdehnung} A_5 &= \text{20 %}
\end{align*}
\]

**Sicherheitbeiwerte für Rohre mit Abnahmezeugnis im Bereich I bei} A_5 = 20\% (n. DIN 2413)

Sicherheitbeiwert S = 1,6

zul. Spannung \(\sigma_{zul} = K / S = 146,9 \text{ N/mm²}

\(\psi_N = 1\) für nahtlose Stahlrohre und für geschweißte Stahlrohre nach DIN 1628

\(\psi_N = 0,9\) für geschweißte Stahlrohre nach DIN 1626.

Wertigkeit der Schweißnaht \(\psi_N = 1,00\)

Zuschlag \(c_1\) bzw \(c_1\) zur Berücksichtigung der Wanddicken-Unterschreitung für \(d_a \leq 219,1 \text{ mm}\).

Zuschlag \(c_1 = 0,40 \text{ mm}\)

Zuschlag \(c_1 = 12,50 \%\)

Zuschlag \(c_2\) zur Berücksichtigung von Korrosion bzw. Abnutzung, allgemein ist \(c_2 = 1\text{mm}\) und kann bei Rostschutz bzw. bei austenitischen Stählen entfallen.

Zuschlag \(c_2 = 0,40 \text{ mm}\)
Berechnung:

\[
\text{Strömungsgeschwindigkeit } w = \frac{4 \cdot V}{3600} = 2,980 \text{ m/s}
\]

\[
\text{Reynolds-Zahl } R_e = \frac{d_i \cdot 10^{-3} \cdot w}{\nu} = 1,58 \cdot 10^5
\]

Bei \(R_e > R_{e,\text{krit}} = 2320 \) liegt eine Wirbelströmung also turbulente Strömung vor.

relative Rauigkeit \(k_{rel} = \frac{d_i}{k} = 1722,50 \)

Rohreibungszahlen

Fall 1) bei \(R_e < 2320 \) laminarer Strömung (Beispiel: Ölleitungen) unabhängig von der Rauigkeit der Rohrwand

\[\lambda_1 = \frac{64}{R_e} = 0,00041 \]

Fall 2) Näherungsformeln bei völlig glatten Rohren

\[\lambda_2 = \frac{0,309}{(\log_{10}(\frac{R_e}{7}))^2} = 0,01630 \]

Fall 3) bei rauen Rohrwänden

\[\lambda_3 = \frac{1}{2 \cdot \log_{10}(\frac{d_i}{k}) + 1,14} = 0,01726 \]

Fall 4) Im Übergangsgebiet zw. vollrauem und glattem Verhalten der Rohrwand

\[\lambda_4 = 0,11 \cdot \left(\frac{k}{d_i} + \frac{68}{R_e} \right)^{0,25} = 0,01961 \]

Vorliegender Fall = \(\text{GEW}("Rohre/Abf";F;1) \)

Fall 4

\[f_1 = \text{TAB("Rohre/Abf";f_1;F=Fall)} = 4 \]

\[\lambda = \text{WENN}(f_1=4;\lambda_4;\text{WENN}(f_1=3;\lambda_3;\text{WENN}(f_1=2;\lambda_2;\lambda_1))) = 0,01961 \]

Druckverlust in einer geraden kreisförmigen Rohrleitung ohne Einbauten

\[
\text{Druckverlust } \Delta p_R = \frac{\lambda_4 \cdot L \cdot \rho \cdot w^2}{d_i \cdot 10^{-3} \cdot 2} = 75795 \text{ Pa}
\]

Druckverlust durch Rohrleitungseinbauten

\[
\text{Druckverlust } \Delta p_E = \frac{\xi \cdot \rho \cdot w^2}{2} = 6409 \text{ Pa}
\]

Gesamtdruckverlust

\[
\Delta p = \Delta p_R + \Delta p_E + \Delta H \cdot \rho \cdot g = 278326 \text{ Pa}
\]
Verlustleistung
\[P_v = \frac{V}{3600} \cdot \Delta p = 3093 \text{ W} \]

rechnerische Wanddicke gegen Verformung
für den Geltungsbereich I
\[
s_{VI,1} = \frac{d_a \cdot p_B}{10 \cdot 2 \cdot \sigma_{zul} \cdot \nu N} = 0,00 \text{ mm}
\]
\[
s_{VI,2} = \frac{d_a \cdot p_{max}}{10 \cdot 2 \cdot \sigma_{zul} \cdot \nu N} = 7,56 \text{ mm}
\]
\[
s_{VI} = \text{WENN}(\text{Ber} = \text{Bereich III}; s_{VI,2}; s_{VI,1}) = 7,56 \text{ mm}
\]

für den Geltungsbereich II bei \(d_a/d_i \leq 1,67 \)
(Hilfswert verhindert nur eine 0 im Nenner, wenn \(p_B = 0 \) wird.)
\[
\text{Hilfswert } p = \text{WENN}(p_B = 0; 1;p_B) = 1 \text{ bar}
\]
\[
s_{VII,1} = \frac{d_a \cdot \sigma_{zul} \cdot \nu N + 1}{2 \cdot \nu N} = 0,03 \text{ mm}
\]
\[
s_{VII,1} = \text{WENN}(p_B = 0; 0; s_{VII,1}) = 0,00 \text{ mm}
\]

für den Geltungsbereich II bei \(1,67 \leq d_a/d_i \leq 2 \)
\[
s_{VII,2} = \frac{d_a}{2 \cdot \nu N} = 0,02 \text{ mm}
\]
\[
s_{VII,2} = \text{WENN}(p_B = 0; 0; s_{VII,2}) = 0,00 \text{ mm}
\]

für den Geltungsbereich III bei konstantem Schwingbereich \(\Delta p \) der Druckschwankungen
\[
s_{VIII} = \frac{d_a}{2 \cdot \nu N} = 1,54 \text{ mm}
\]

maßgebende rechnerische Wanddicke
\[
s_v = \text{WENN}(\text{Ber} = \text{Bereich III}; \text{MAX}(s_{VII}, s_{V}); \text{WENN}(\text{Ber} = \text{Bereich II}; s_{VII}, s_{VI})) = 7,56 \text{ mm}
\]

erforderliche Wanddicke \(s \)
\[
s_{erf} = \text{MAX}(s_v + c_1 + c_2 \cdot (s_v + c_2 \cdot 100)) = 9,10 \text{ mm}
\]

Nachweis Wanddicke:
\[
\frac{s}{s_{erf}} = 1,10 > 1,0
\]
Grenzmaße für Außenflächen:

Maße und Abmaße

Nach DIN ISO 286

Eingabewerte:

Nennmaß \(N = 120 \text{ mm} \)
Toleranzgrad \(IT = \text{GEW("Abmessungen/Grundt";IT;)} = 5 \)
Toleranzfeldlage \(TL = \text{GEW("Abmessungen/Grenzmaß";TF;)} = d \)

Tabellenwert:

Grundtoleranz:
\(GT = \text{TAB("Abmessungen/Grundt"; GT; N≥N; IT=IT)} = 15 \mu \text{m} \)

Grenzmaß für die Lage:
\(es_v = \text{TAB("Abmessungen/Grenzmaß"; e; N≥N; TF=TL)} = -120 \mu \text{m} \)

Berechnung:

Hilfswert
\(h_1 = \text{TAB("Abmessungen/Grenzmaß"; h1; N≥N; TF=TL)} = 2 \)

das obere Abmaß:
\(es = \text{WENN}(es_v ≠ 0; \text{WENN}(h_1 < 8; es_v; es_v + GT)) = -120 \mu \text{m} \)

das untere Abmaß:
\(ei = \text{WENN}(h_1 < 8; \text{es-GT}; es_v) = -135 \mu \text{m} \)

das Höchstmaß:
\(G_o = N + \frac{es}{10^3} = 119,880 \text{ mm} \)

das Mindestmaß:
\(G_u = N + \frac{ei}{10^3} = 119,865 \text{ mm} \)
Grenzmaße für Innenflächen:

Nach DIN ISO 286

Eingabewerte:
- Nennmaß \(N = 450 \text{ mm} \)
- Toleranzgrad
 \(IT = \text{GEW(}"\text{Abmessungen/Grundt}";\text{IT};\text{)} = 10 \)
- Toleranzfeldlage
 \(TL = \text{GEW(}"\text{Abmessungen/Grenzmaß}";\text{TF};\text{)} = ZA \)

Tabellenwert:
- Grundtoleranz
 \(GT = \text{TAB(}"\text{Abmessungen/Grundt}";\text{GT}; N \geq N; IT=IT\text{)} = 250 \text{ µm} \)
- Grenzmaß für die Lage:
 \(EI_v = \text{TAB(}"\text{Abmessungen/Grenzmaß}"; e; N \geq N; TF=TL\text{)} = -1450 \text{ µm} \)

Berechnung:
- Hilfswert
 \(h1 = \text{TAB(}"\text{Abmessungen/Grenzmaß}"; h1; N \geq N; TF=TL\text{)} = 20 \)
- das obere Abmaß:
 \(ES = \text{WENN}(h1>8; EI_v; EI_v+GT) = -1450 \text{ µm} \)
- das untere Abmaß:
 \(EI = \text{WENN}(EI_v \neq 0; \text{WENN}(h1>8; EI_v-GT; EI_v); 0) = -1700 \text{ µm} \)
- das Höchstmaß:
 \(G_o = N + \frac{ES}{10} = 448,550 \text{ mm} \)
- das Mindestmaß:
 \(G_u = N + \frac{EI}{10} = 448,300 \text{ mm} \)
Grundtoleranzermittlung:

Nach DIN ISO 286 T1

Eingabewerte:
Nennmaß N = 350 mm
Toleranzgrad IT = 12

Tabellenwert:
Grundtoleranz:
GT = 570 µm

Nach DIN ISO 286 T1
Eingabewerte:
Nennmaß N = 350 mm
Toleranzgrad IT = 12

Tabellenwert:
Grundtoleranz:
GT = 570 µm
Längenänderung und axiale Rohrkraft von Rohrleitungen

Länge der Rohrleitung \(L = 52,00 \text{ m} \)

Reihe \(Rh\) = \(\text{GEW("Rohre/NStR";} ; \text{Re;}) = \text{Reihe 3} \)

Die unteren genormten Abmessungen gelten nur für nahtlose Stahlrohre.

Außendurchmesser \(d_a = \text{GEW("Rohre/NStR";} ; d_a ; \text{Re} = \text{Rh}) = 159,00 \text{ mm} \)

\(\text{min.s = TAB("Rohre/NStR";} ; s_{\text{min}} ; d_a = d_a ; \text{Re} = \text{Rh}) = 4,50 \text{ mm} \)

\(\text{max.s = TAB("Rohre/NStR";} ; s_{\text{max}} ; d_a = d_a ; \text{Re} = \text{Rh}) = 45,00 \text{ mm} \)

gewählte Wanddicke sollte zwischen \(\text{min.s und max.s liegen} \)

\(\text{gew. s = GEW("Rohre/NStR";} ; s \geq \text{min.s} ; s \leq \text{max.s;}) = 8,00 \text{ mm} \)

\(d_i = d_a - 2 \times s = 143,00 \text{ mm} \)

Wärmdehnungsbeiwert \(\alpha = 11 \times 10^{-6} \text{ 1/K} \)

E-Modul \(E = 210000 \text{ N/mm}^2 \)

Einbautemperatur \(\vartheta_E = 23 \text{ °C} \)

Betriebstemperatur \(\vartheta_B = 55 \text{ °C} \)

höchste Umgebungstemperatur \(\vartheta_{U,o} = 30 \text{ °C} \)

tiefste Umgebungstemperatur \(\vartheta_{U,u} = 20 \text{ °C} \)

Vorspannungsfaktor \(f_v = 0,50 \)
Berechnung:

Temperaturdifferenz $\Delta \vartheta$

\[\Delta \vartheta_1 = \vartheta_B - \vartheta_{U,U} = 35,00 \, ^\circ\text{C} \]
\[\Delta \vartheta_2 = \vartheta_{U,o} - \vartheta_{U,U} = 10,00 \, ^\circ\text{C} \]
\[\Delta \vartheta_3 = \vartheta_B - \vartheta_{U,o} = 25,00 \, ^\circ\text{C} \]

\[\Delta \vartheta = \text{WENN}(\vartheta_B \geq \vartheta \geq \vartheta \geq \vartheta \geq \vartheta_{U,o} \text{ UND } \vartheta_B \leq \vartheta \leq \vartheta \leq \vartheta \leq \vartheta_{U,o} ; \Delta \vartheta_1 ; \Delta \vartheta_2 ; \Delta \vartheta_3) = 35,00 \, ^\circ\text{C} \]

Verlängerung $\Delta L = L \cdot 10^3 \cdot \alpha \cdot \Delta \vartheta$

\[\Delta \vartheta_{V1} = \vartheta_E - \vartheta_{U,U} = 3,00 \, ^\circ\text{C} \]
\[\Delta \vartheta_{V2} = \vartheta_{U,o} - \vartheta_{U,U} = 10,00 \, ^\circ\text{C} \]
\[\Delta \vartheta_{V3} = \vartheta_E - \vartheta_{U,o} = -7,00 \, ^\circ\text{C} \]

\[\Delta \vartheta_V = \text{WENN}(\vartheta_B \geq \vartheta \geq \vartheta \geq \vartheta \geq \vartheta_{U,o} ; \Delta \vartheta_{V1} ; \Delta \vartheta_{V2} ; \Delta \vartheta_{V3}) = 3,00 \, ^\circ\text{C} \]

Vorspannlänge $L_V = L \cdot 10^3 \cdot \alpha \cdot (l_V \cdot \Delta \vartheta - \Delta \vartheta_V) = 8,3 \, \text{mm}$

Bei einer Vorspannlänge $L_V = 0$ gilt die Leitung als vorgespannt und in der Montage muss keine Vorspannung aufgebracht werden, ansonsten muss eine Vorspannung aufgebracht werden.

Querschnitt des Rohres $A = \frac{\pi \cdot (d_a^2 - d_i^2)}{4} = 3795,0 \, \text{mm}^2$

axiale Rohrkraft $F_a = E \cdot A \cdot \alpha \cdot \Delta \vartheta \cdot 10^{-3} = 306,83 \, \text{kN}$
Passung:

Nach DIN ISO 286

Eingabewerte:

Nennmaß N = 45 mm
Toleranzgrad Welle
\(IT_w = \text{GEW("Abmessungen/Grundt";IT;)} = 10 \)
Toleranzgrad Bohrung
\(IT_b = \text{GEW("Abmessungen/Grundt";IT;)} = 9 \)
Toleranzfeldlage Welle
\(TL_w = \text{GEW("Abmessungen/Grenzmaß";TF;)} = f \)
Toleranzfeldlage Bohrung
\(TL_b = \text{GEW("Abmessungen/Grenzmaß";TF;)} = G \)

Welle:

Tabellenwert:
Grundtoleranz:
\(GT = \text{TAB("Abmessungen/Grundt"; GT; N\geq N; IT=IT_w)} = 100 \, \mu m \)
Grenzmaß für die Lage:
\(es_v = \text{TAB("Abmessungen/Grenzmaß"; e; N\geq N; TF=TL_w)} = -25 \, \mu m \)

Berechnung:
Hilfswert
\(h1 = \text{TAB("Abmessungen/Grenzmaß"; h1; N\geq N; TF=TL_w)} = 4 \)
das obere Abmaß:
\(es = \text{WENN}(es_v\neq 0; \text{WENN}(h1<8; es_v; es_v+GT)) = -25 \, \mu m \)
das untere Abmaß:
\(ei = \text{WENN}(h1<8; es-GT; es_v) = -125 \, \mu m \)
das Höchstmaß:
\(G_{ow} = N + es / 10^3 = 44,975 \, mm \)
das Mindestmaß:
\(G_{uw} = N + ei / 10^3 = 44,875 \, mm \)
Maßtoleranz:
\(T_w = \text{ABS}(es - ei) = 100 \, \mu m \)

Bohrung:

Tabellenwert:
Grundtoleranz:
\(GT = \text{TAB("Abmessungen/Grundt"; GT; N\geq N; IT=IT_b)} = 62 \, \mu m \)
Grenzmaß für die Lage:
\(EL_v = \text{TAB("Abmessungen/Grenzmaß"; e; N\geq N; TF=TL_b)} = 9 \, \mu m \)
Berechnung:

Hilfswert

\[
\begin{align*}
h_1 &= \text{TAB("Abmessungen/Grenzmaß"; h1; N\geq N; TF=TL) } = 5 \\
\text{das obere Abmaß:} & \\
ES &= \text{WENN(h1>8; EI_v; EI_v+GT)} = 71 \, \mu\text{m} \\
\text{das untere Abmaß:} & \\
EI &= \text{WENN(EI_v\neq 0; WENN(h1>8; EI_v-GT; EI_v); 0)} = 9 \, \mu\text{m} \\
\text{das Höchstmaß:} & \\
G_{ub} &= N + ES / 10^3 = 45,071 \, \text{mm} \\
\text{das Mindestmaß:} & \\
G_{ub} &= N + EI / 10^3 = 45,009 \, \text{mm} \\
\text{Maßtoleranz:} & \\
T_b &= \text{ABS(ES - EI)} = 62 \, \mu\text{m}
\end{align*}
\]

Passungswerte:

Höchstpassung:

\[
P_o = (G_{ub} - G_{uw}) * 10^3 = 196 \, \mu\text{m}
\]

Mindestpassung:

\[
P_u = (G_{ub} - G_{ow}) * 10^3 = 34 \, \mu\text{m}
\]

Pass toleranz:

\[
P_T = P_o - P_u = 162 \, \mu\text{m}
\]
Radialverdichterauslegung (vereinfachtes Verfahren):

Betriebsbedingungen:

- Ansaugdruck $p_s = 6.20$ bar
- Enddruck $p_d = 33.06$ bar
- Ansaugtemperatur $T_s = 305.15$ K
- Kühlwassertemperatur $T_k = 298.15$ K
- Massenstrom $m' = 14.85$ kg/s
- maximale Drehzahl $n_{max} = 15000.00$ 1/min
- max. spez. polytrope Stufenarbeit $\dot{h}_{pmax} = 42.00 \times 0.981 = 41.20$ kJ/kg
- Druckverhältnis $\Pi = \frac{p_d}{p_s} = 5.3323$

Gasdaten:

- molare Masse $M = 23.693$ kg/kmol
- Gaskonstante $R = \frac{8.3145}{M} = 0.3509$ kJ/kgK
- Realgasfaktor Saugseite $Z_s = 1.0$
- Realgasfaktor Druckseite $Z_d = 1.0$
- Verhältnis spez. Wärmekapazitäten:
 - Saugseite $\kappa_s = 1.357$
 - Druckseite $\kappa_d = 1.330$
- Isentroper Volumenexponent $k_v = \frac{\kappa_s + \kappa_d}{2} = 1.343$
- Isentroper Temperaturrexponent $k_T = \frac{\kappa_s + \kappa_d}{2} = 1.343$

Volumenstrom, Laufraddurchmesser, Drehzahl:

Volumenstrom Saugzustand

\[V' = \frac{m' \times Z_s \times R \times T_s}{p_s \times 100} = 2.565 \text{ m}^3/\text{s} \]

mittl. pol. Druckzahl $\psi_p = 1.0$

max. Umfangsgeschwindigkeit

\[u_{2max} = \sqrt[3]{2000 \times \frac{\dot{h}_{pmax}}{\psi p}} = 287.1 \text{ m/s} \]

gewählt $u_2 = 280.0 \text{ m/s}$

Volumenstromzahl

1. Stufe $\varphi = \frac{4 \times \pi \times V' \times (\frac{n_{max}}{60})^2}{u_{2max}^3} = 0.0851 \text{ m/s}$

gewählt $\varphi = 0.0850 \text{ m/s}$

Laufraddurchmesser

1. Stufe $d_2 = \sqrt{\frac{V'}{\pi/4 \times u_2^2 \times \varphi}} = 0.370 \text{ m}$

Drehzahl $n = \frac{u_2 \times 60}{\pi \times d_2} = 14453 \text{ 1/min}$
Spezifische polytrophe Arbeit:
\[\kappa \eta_p = \kappa v = 1,343 \]
\[\eta_p = \text{TAB("Beiwerte/Laufr"; \eta_p; \phi=\phi)} = 0,840 \]
\[m = \frac{k \eta_p}{k - 1} = 0,304 \]

Zahl der Zwischenkühler \(c = 1 \)
Zahl der Stufengruppen \(c + 1 \)
mittl. Druckverhältnis Stufengruppe
\[\Pi_{\text{Gr}} = \Pi^{(1/(c+1))} = 2,3092 \]

Endtemperatur 1. Stufengruppe
\[t_{d1} = \Pi_{\text{Gr}} m \cdot T_s - 273,15 = 120 \, ^\circ C \]

Grädigkeit Zwischenkühler gewählt
gewählt \(\Delta t = 10 \, K \)
Rückkühltemperatur
\[T_R = T_k + \Delta t = 308,15 \, K \]
spezifische polytrophe Arbeit
\[t_d = T_R \cdot \Pi_{\text{Gr}} m - 273,15 = 124 \, ^\circ C \]
Kühlerverlust \(h_c = 0 \)
\[h_p = (T_s + c \cdot T_R \cdot (1 + h_c)) \cdot \frac{1}{m} (\frac{Z_s + Z_d}{2} \cdot R \cdot \frac{1}{m} \cdot \Pi_{\text{Gr}} m - 1) = 205,09 \, \text{kJ/kg} \]

Stufenzahl:

Volumenstrom-Faktor
\[\alpha = \frac{\Pi \cdot (k - 1)}{(c + 1) \cdot k \cdot \eta_p} = 0,244 \]

Saugseite:
pol. Wirkungsgrad
\[\eta_{ps} = \text{TAB("Beiwerte/Laufr"; \eta_p; \phi=\phi)} = 0,840 \]
spez. Arbeitszahl \(s_s = \text{TAB("Beiwerte/Laufr"; s; \phi=\phi)} = 0,615 \)

Druckseite:
Volumenstromzahl \(\varphi_d = \alpha \cdot \phi = 0,021 \)
pol. Wirkungsgrad \(\eta_{pd} = \text{TAB("Beiwerte/Laufr"; \eta_p; \phi=\phi_d)} = 0,754 \)
spez. Arbeitszahl \(S_d = \text{TAB("Beiwerte/Laufr"; s; \phi=\phi_d)} = 0,654 \)

Mitte:
Volumenstromzahl \(\varphi_m = (\phi + \varphi_d) / 2 = 0,053 \)
pol. Wirkungsgrad \(\eta_{pm} = \text{TAB("Beiwerte/Laufr"; \eta_p; \phi=\phi_m)} = 0,832 \)
spez. Arbeitszahl \(S_m = \text{TAB("Beiwerte/Laufr"; s; \phi=\phi_m)} = 0,638 \)

mittl. polytroper Wirkungsgrad
\[\eta_p = (\eta_{ps} + \eta_{pd} + \eta_{pm}) / 3 = 0,809 \]
mittl. polytrope Druckzahl
\[\psi_p = 2 \cdot \eta_p \cdot (s_s + s_m + s_d) / 3 = 1,029 \]
spez. polytrope Arbeit je Stufe
\[h_p = \psi_p \cdot u_2^2 / 2000 = 40,34 \, \text{kJ/kg} \]
Stufenzahl \(i = h_p / h_p' = 5,08 \)
gewählt \(i = 5 \)
Schallgeschwindigkeit, Saugseite
\[
\alpha_0 = \sqrt[3]{10^3 \cdot \kappa_s \cdot Z_s \cdot R \cdot T_s} = 381,19
\]
nach Diagramm \(i_{\text{max}} = 7\)
falls \(i > i_{\text{max}}\) \(\phi\) reduzieren oder Zahl der Gehäuse erhöhen!

Unfangs-Machfach 1. Stufe \(M_{u12} = \frac{u_2}{\alpha_0} = 0,735\)
falls \(M_{u12} > (0,9....1,1)\) \(u_2\) reduzieren und Stufenzahl, Laufraddurchmesser und Drehzahl neu bestimmen!

Leistung:

Labyrinthverluste, geschätzt \(v = 0,020\)
(Ausgleichskolben und Sperrgas)

innere Leistung \(P_i = m' \cdot (1 + v) \cdot h_p / \eta_p = 3840\ kW\)

Mechanische Verluste nach Herstellerunterlagen
Lager \(P_{VL} = 42\ kW\)
Sperröldichtung \(P_{VS} = 30\ kW\)
Gleitringdichtung \(P_{VD} = 0\ kW\)

Leistung an der Verdichterkupplung
\(P_K = P_i + P_{VL} + P_{VS} + P_{VD} = 3912\ kW\)
Stanzautomat

Vorwerte:
- Nenn-Presskraft \(F_n = 40,0 \text{ kN} \)
- Hub \(H = 20,0 \text{ mm} \)
- Scherfläche \(S = 188,0 \text{ mm}^2 \)
- maximale Scherfestigkeit \(\tau_{aBmax} = 280,0 \text{ N/mm}^2 \)
- Blechdicke \(s = 1,0 \text{ mm} \)

Berechnung:
- Schneidkraft \(F = S \cdot \tau_{aBmax} = 52640,0 \text{ N} \)
- Schneidarbeit \(W = \frac{2 \cdot F \cdot s}{3 \cdot 10^3} = 35,1 \text{ Nm} \)

Arbeitsvermögen im Dauerhub:
- \(W_D = \frac{F_n \cdot H}{15} = 53,3 \text{ Nm} \)
- \(\frac{F_n \cdot 10^3}{F} = 0,76 < 1 \)
- \(\frac{W}{W_D} = 0,66 < 1 \)

Die Presse kann im Dauerhub eingesetzt werden.
Antriebszapfen

Vorgaben
Maßgeb. Durchmesser $D_1 = 50,0 \text{ mm}$
Biegemoment $M = 1250,0 \text{ Nm}$
Torsionsmoment $T = 1750,0 \text{ Nm}$
Anwendungsfaktor $K_A = 1,5$
Fließgrenze $R_{eN} = 335,00 \text{ N/mm}^2$
Größeneinflußfaktor $K_t = 0,94$

Nachrechnung gegen plastische Verformung
Widerstandsmoment $W = \frac{D_1^3 \cdot \pi}{32} = 12271,8 \text{ mm}^3$
Biegespannung $\sigma_{b,max} = \frac{K_A \cdot M \cdot 10^3}{W} = 152,8 \text{ N/mm}^2$
Torsionsspannung $\tau_{t,max} = \frac{K_A \cdot T \cdot 10^3}{2 \cdot W} = 107,0 \text{ N/mm}^2$
Biegefestigkeit $\sigma_{bF} = 1,2 \cdot R_{eN} \cdot K_t = 377,9 \text{ N/mm}^2$
Torsionsfestigkeit $\tau_{tF} = 1,2 \cdot R_{eN} \cdot \frac{K_t}{\sqrt{3}} = 218,2 \text{ N/mm}^2$
Gesamtsicherheit $S_F = \frac{1}{\sqrt{\left(\frac{\sigma_{b,max}}{\sigma_{bF}}\right)^2 + \left(\frac{\tau_{t,max}}{\tau_{tF}}\right)^2}} = 1,57 > 1,5$
Bewegungsschraube

System:

Betriebslängskraft $F_A = 80 \text{ kN}$

Wahl der Gewindeart: ISO-Trapezgewinde DIN 103 oder Sägengewinde DIN 513

$GA = \text{GEW}("\text{Material/BewS"};GA;) = \text{Sägengewinde}$

Gewinderadurchmesser $d = \text{GEW}("\text{Verbindungen/AbmGew"};d;GA=GA) = 48 \text{ mm}$

Steigung des Gewindes $P = \text{GEW}("\text{Verbindungen/AbmGew"};P;GA=GA; d=d) = 8,00 \text{ mm}$

Gewindetiefe $h_3 = \text{TAB}("\text{Verbindungen/AbmGew"};h_3;P=P;GA=GA) = 6,94 \text{ mm}$

Gewindetragtiefe $H_1 = \text{TAB}("\text{Verbindungen/AbmGew"};H_1;P=P;GA=GA) = 6,00 \text{ mm}$

Weitere Abmessungen und Querschnitte für das Gewinde:

$K_2 = \text{WENN}(GA="\text{Trapezgewinde"};1;2) = 2$

Funkendurchmesser $d_2 = \text{WENN}(K_2=1;d-0,05*P;\text{WENN}(K_2=2;d-0,75*P;0)) = 42,00 \text{ mm}$

Kerndurchmesser $d_3 = d-2*h_3 = 34,12 \text{ mm}$

Stahlsorte $S = \text{GEW}("\text{Material/MinFW"};S;) = \text{E335}$

Beanspruchung $B = \text{GEW}("\text{Material/BewS"};B;SP;SP;) = \text{schwellig}$

Faktor für die zul. Vergleichsspannung $f_1 = \text{TAB}("\text{Material/BewS"};f_{\sigma_zu\ell};BSP=B;GA=GA) = 0,25$

Betriebsdauer $B_Z = \text{GEW}("\text{Verbindungen/\text{p\text{zul}}BS\text{"};B;Hzeit;) = \text{Seltener Betrieb}$

Werkstoff Spindel $WS_S = \text{GEW}("\text{Verbindungen/\text{p\text{zul}}BS\text{"};WS;SP;) = \text{Stahl}$
Werkstoff Mutter

\(WS_M = \text{GEW("Verbindungen/\text{p}_\text{zul}BS:WS_M;WS_S=WS_S")} \) = Stahl

zulässige Flankenpressung

\(p_{\text{zul}} = \text{TAB("Verbindungen/\text{p}_\text{zul}BS:;p_{\text{zul}};WS_S=WS_S;WS_M=WS_M;B_{\text{zeit}}=B_2")} = 16,00 \text{ N/mm}^2 \)

\(R_m = \text{TAB("Material/MinFW";R_m;S=S;d=d)} = 570 \text{ N/mm}^2 \)

E-Modul \(E = 210000 \text{ N/mm}^2 \)

Gangzahl \(n = 3 \)

Knickfall \(K_F = 2 \)

Knickspannung (Mindestwerte)
bei \(\lambda \geq 90 \), \(S_k \geq 2,6 \ldots 6 \)

Knickspannung nach Euler \(S_{K,E,\text{min}} = 3 \)
bei \(\lambda < 90 \), \(S_k \geq 1,7 \ldots 4 \)

Knickspannung nach Tetmajer \(S_{K,T,\text{min}} = 2 \)

Knickspannungsrate für E295 und E335 \(k = 0,6 \)

Lagerabmessungen:
mittlerer Radius der Lagerstützfläche \(R_L = 40,0 \text{ mm} \)

Berechnung:

zul. Vergleichsspannung \(\sigma_{V,zul} = f_1 \cdot R_m = 142,5 \text{ N/mm}^2 \)

Steigung des mehrgängigen Gewindes

\(P_h = n \cdot P = 24 \text{ mm} \)

freie Länge \(l = 750 \text{ mm} \)

tragende Mutternhöhe \(m = 130 \text{ mm} \)

Reibwerte im Gewinde

\(\mu_G = 0,05 \) bei Druckölschmierung

\(\mu_G = 0,08 \) bei reichlicher Fettschmierung

\(\mu_G = 0,12 \ldots 0,15 \) bei fast trockenen Flanken

Reibzahl im Gewinde \(\mu_G = 0,08 \)

Reibwerte im Lager

\(\mu_L = \mu_G \) bei Gleitlagerung

\(\mu_L = 0,03 \) bei Wälzlagerung

Reibzahl im Lager \(\mu_L = 0,08 \)

ideelle Druckfestigkeit für E295 und E 335

\(\sigma_0 = 350,00 \text{ N/mm}^2 \)

Knickfall \(K_F = 2 \)

Knickspannung (Mindestwerte)

Knickspannung nach Euler \(S_{K,E,\text{min}} = 3 \)

Knickspannung nach Tetmajer \(S_{K,T,\text{min}} = 2 \)

Schlankheitsgrad \(\lambda = \frac{P_h}{d_2 \cdot \pi} \)

Knickspannungsrate für E295 und E335 \(k = 0,6 \)

\(\alpha_{[\text{TAN}]} = \frac{P_h}{d_2 \cdot \pi} = 0,182 \)

Steigungswinkel des Gewindes

\(\alpha_{[\text{Grad}]} = \text{atan}(\frac{P_h}{d_2 \cdot \pi}) = 10,31° \)
Flankenwinkel im Normalschnitt
\[\beta_{1[TAN]} = \tan(15) \cdot \cos(\alpha[\text{Grad}]) = 0,2636 \]
\[\beta_{2[TAN]} = \tan(3) \cdot \cos(\alpha[\text{Grad}]) = 0,0516 \]
Reibwinkel des Gewindes
\[\beta_{[\text{TAN}]} = \begin{cases} \tan(15) \cdot \cos(\alpha[\text{Grad}]) = 0,2636 & \text{bei } K_2 = 1 \\ \tan(3) \cdot \cos(\alpha[\text{Grad}]) = 0,0516 & \text{bei } K_2 = 2 \end{cases} \]

Drehmomente
zum Drehen der Spindel
\[M_{GA} = F_A \cdot \tan(\alpha[\text{Grad}]) \cdot d_2^2 / 2 = 446,70 \text{ Nm} \]
Reibmoment im Lager
\[M_L = F_A \cdot \mu_L \cdot R_L = 256,00 \text{ Nm} \]
Antriebsdrehmoment
\[M_A = M_{GA} + M_L = 702,70 \text{ Nm} \]
Rückdrehmoment
\[M_R = M_L - F_A \cdot \tan(\alpha[\text{Grad}]) \cdot d_2^2 / 2 = 87,43 \text{ Nm} \]

Überprüfung, ob das System selbsthemmend ist.
\[f = \begin{cases} 0 & \text{bei } M_R < 0 \\ 1 & \text{bei } M_R \geq 0 \end{cases} \]
Das System ist selbsthemmend

Spannungen
Zug - oder Druckspannung
\[\sigma = \frac{F_A}{d_3^2 \cdot \pi / 4} \text{ in N/mm}^2 \]

Wird das Lagerreibmoment über die Spindel geleitet?
\[\text{Antwort} = \text{GEW("Verbindungen/Abf";Ant:)} = \text{nein} \]
\[\text{Abf}.M_L = \text{WENN(Antwort="ja";1;2)} = 2 \]

Torsionsspannung
\[\tau_t = \begin{cases} M_A / d_3^3 & \text{bei } M_{GA} \leq 2 \cdot \tan(\alpha[\text{Grad}]) \cdot d_2^2 / 2 \\ 0,2 \cdot d_3 & \text{bei } M_{GA} > 2 \cdot \tan(\alpha[\text{Grad}]) \cdot d_2^2 / 2 \end{cases} \]
\[\tau_t = 56,23 \text{ N/mm}^2 \]

Vergleichsspannung
\[\sigma_V = \sqrt{\sigma^2 + 3 \cdot \tau_t^2} \]
\[\sigma_V / \sigma_{zul} = 0,92 \leq 1 \]

Knicksicherheit:
Schlankheitsgrad
\[\lambda = \begin{cases} \text{WENN}(K_F = 1;8^l / d_3;\text{WENN}(K_F = 2;4^l / d_3;0)) & \text{in mm} \end{cases} \]
\[\lambda = 87,92 \text{ mm} \]
Berechnung für $\lambda \geq 90$ nach Euler

\[S_{K,E} = \pi^2 \cdot \frac{E}{(\lambda^2 \cdot \sigma)} = 3.06 \]

Berechnung für $50 < \lambda < 90$ nach Tetmajer

\[S_{K,T} = \frac{(\sigma_0 - \lambda^* k)}{\sigma} = 3.40 \]

Kontrolle, ob Mindestwerte eingehalten werden

\[S_{K,E,\text{min}}/S_{K,E} = 0.98 \leq 1 \]
\[S_{K,T,\text{min}}/S_{K,T} = 0.59 \leq 1 \]

Flankenpressung

Gewindefaktor (allgemein) $k = 0.75$

Flankenpressung

\[p = \frac{F_A \cdot P \cdot 10^8}{m \cdot d^2 \cdot \pi \cdot H_1 \cdot k} = 8.29 \text{ N/mm}^2 \]

Nachweis

\[p/p_{zul} = 0.52 \]
Buckelschweißverbindung

System:
Kraft \(F = 2,40 \text{kN} \)
Blechdicke \(s = 2,00 \text{mm} \)
zugbeanspruchte Querschnittsfläche des Bauteils \(S = 0,00 \text{mm}^2 \)
Anzahl der Buckel im Anschluß \(n = 3 \)

Buckelabmessungen
\(d_1 = 4,00 \text{mm} \)
\(d_2 = 0,00 \text{mm} \)
\(l = 0,00 \text{mm} \)
\(b = 0,00 \text{mm} \)

Festigkeitswerte:
Werkstoff Zugfestigkeit \(R_m = 270 \text{N/mm}^2 \)
Beanspruchungsart \(B_s = \) GEW("Verbindungen/PSchw";\(B_s \)) = ruhend

zul. Scherspannung in der Schweißlinse
\(\tau_{wa_{zul}} = \text{TAB("Verbindungen/PSchw"; } \tau_{wa}; B_s=Bs; R_m=R_m\text{)} = 66 \text{N/mm}^2 \)

zul. Leibungsdruck am Schweißbuckel
\(\sigma_{wl_{zul}} = \text{TAB("Verbindungen/PSchw"; } \sigma_{wl}; B_s=Bs;m="einschnittig";R_m=R_m\text{)} = 179 \text{N/mm}^2 \)

zul. Schubspannung in der Schweißlinse
\(\tau_{ws_{zul}} = \text{TAB("Verbindungen/PSchw"; } \tau_{ws}; B_s=Bs; R_m=R_m\text{)} = 81 \text{N/mm}^2 \)

Scherfestigkeit der Schweißlinse \(\tau_{wb} = 0,65 \times R_m = 176 \text{N/mm}^2 \)

Berechnung: (nicht benötigte Spannungsberechnungen löschen)

Die Festigkeitsberechnung für Ring- und Langbuckel erfolgt nur für Abscheren (\(\tau_{wa} \) oder \(F_{wb} \)).

Querschnittsfläche \(A_w \) einer Schweißlinse
\[
A_w = \text{WENN}(l=0;(d_1^2 - d_2^2) \times \frac{\pi}{4}(l-0,5b)*b) = 12,57 \text{mm}^2
\]

Scherspannung \(\tau_{wa} = \frac{F \times 10^3}{n \times A_w} = 63,64 \text{N/mm}^2 \)

Leibung \(\sigma_{wl} = \frac{F \times 10^3}{n \times d_1 \times s} = 100,00 \text{N/mm}^2 \)
Schubspannung \(\tau_{ws} = \frac{F \cdot 10^3}{n \cdot d_1 \cdot s \cdot \pi} \) = 31,83 N/mm²

Abscherkraft der Schweißverbindung
\(F_{WB} = n \cdot A_w \cdot \tau_{WB} \) = 6636,96 N

Zugbruchkraft des Bauteils
\(F_B = \text{WENN}(R_m = 0; \text{WENN}(S = 0; S \cdot R_m)) \) = 0,00 N

Nachweise:
- Scherspannungsnachweis: \(\frac{\tau_{wa}}{\tau_{wazul}} = 0,96 \leq 1 \)
- Lochleibungsnachweis: \(\frac{\sigma_{wl}}{\sigma_{wlzul}} = 0,56 \leq 1 \)
- Schubspannungsnachweis: \(\frac{\tau_{ws}}{\tau_{wszul}} = 0,39 \leq 1 \)
Belastung:
- Kolbenfläche um die Stange \(A = 70,00 \text{ cm}^2 \)
- vorhandener Druck \(p = 40,00 \text{ bar} \)
- Betriebskraft \(F_B = (p \cdot 10^{-3} \cdot A) \cdot 10^3 = 28,00 \text{ N} \)
- Restklemmkraft \(F_{KI} = 13,00 \text{ kN} \)

Werkstoff / Abmessungen:
- Stahl = E335
- E-Modul \(E = 210000,00 \text{ N/mm}^2 \)
- Bauteildicke \(l_B = 69,00 \text{ mm} \)
- Klemmlänge \(l_k = 52,40 \text{ mm} \)
- gewählte Schraube
 - Schraube = GEW("Verbindungen/Schr"; SG;) = M 16
 - Grenzflächenpressung \(p_G = 700,00 \text{ N/mm}^2 \)
 - Gesamtreibungszahl \(\mu_{ges} = 0,12 \)
 - Spannkraft \(F_{sp} = 119,00 \text{ kN} \)
 - Anziehfaktor \(k_A = 1,70 \)
 - Senktiefe \(t = 16,60 \text{ mm} \)
 - Einschraublänge \(l_e = 20,00 \text{ mm} \)
 - Außendurchmesser \(d_w = 24,00 \text{ mm} \)
 - Durchmesser Durchgangsloch \(d_h = 17,50 \text{ mm} \)
 - Krafteinleitungsfaktor \(n = 0,30 \)
 - Spannmoment \(M_{sp} = 302,00 \text{ Nm} \)
 - Dehngrenze \(R_{p0,2} = 940,00 \text{ N/mm}^2 \)

Wahl der geeigneten Festigkeitsklasse:
- Flächenpressung unter dem Schraubenkopf:
 \[
 A_p = \frac{\pi}{4} \left(d_w^2 - d_h^2 \right) = 211,86 \text{ mm}^2
 \]
 \[
 p = \frac{F_{sp}}{0,9 \cdot A_p \cdot 10^3} = 624,10 \text{ N/mm}^2
 \]
 \[
 p / p_G = 0,89 \leq 1
 \]
Erforderliche Montagevorspannkraft:

erforderliche Schraubenlänge:

\[l = l_B \cdot t + l_e = 72,40 \text{ mm} \]

gewählt \(l = 74,00 \text{ mm} \)

Gewindelänge \(b_1 = 44,00 \text{ mm} \)

Länge des Schaftelements \(l_1 = l - b_1 = 30,00 \text{ mm} \)

Länge des gewindetragenden Elements:

\[l_2 = l_B \cdot t - l_1 = 22,40 \text{ mm} \]

Querschnitt \(A_N = 100 \times \text{TAB("Verbindungen/Schr"; } A_{\text{sch}}; \text{ SG=Schraube)} = 201,00 \text{ mm}^2 \)

Querschnitt \(A_3 = 100 \times \text{TAB("Verbindungen/Schr"; } A_{\text{k}}; \text{ SG=Schraube)} = 144,00 \text{ mm}^2 \)

\[d = \text{TAB("Abmessungen/Schraube"; } d; \text{ Bez=Schraube)} = 16,0 \text{ mm} \]

\[\delta_K = \frac{0.4 \cdot d}{A_N \cdot E} = 0,152 \times 10^{-6} \text{ mm/N} \]

\[\delta_1 = \frac{l_1}{A_N \cdot E} = 0,711 \times 10^{-6} \text{ mm/N} \]

\[\delta_2 = \frac{l_2}{A_3 \cdot E} = 0,741 \times 10^{-6} \text{ mm/N} \]

\[\delta_G = \frac{0.5 \cdot d}{A_3 \cdot E} = 0,265 \times 10^{-6} \text{ mm/N} \]

\[\delta_M = \frac{0.4 \cdot d}{A_N \cdot E} = 0,152 \times 10^{-6} \text{ mm/N} \]

\[\delta_S = 2,021 \times 10^{-6} \text{ mm/N} \]

Außendurchmesser der verspannten Teile:

\[D_A = d_w + l_k = 76,40 \text{ mm} \]

\[x = \sqrt[3]{\frac{l_k \cdot d_w}{D_A^2}} = 0,60 \]

Ersatzquerschnitt:

\[A_{\text{ers}} = \frac{\pi}{4} \cdot (d_w^2 - d_h^2) + \frac{\pi}{8} \cdot d_w \cdot (D_A - d_w) \cdot \left((x + 1)^2 - 1 \right) = 982,28 \text{ mm}^2 \]

Elastische Nachgiebigkeit der verspannten Teile:

\[\delta_T = \frac{l_k}{A_{\text{ers}} \cdot E} = 0,254 \times 10^{-6} \text{ mm/N} \]
Kraftverhältnis:

\[\Phi_k = \frac{\delta_T}{\delta_S + \delta_T} = 0,112 \]

\[\Phi = \Phi_k \cdot n = 0,034 \]

Setzbetrag mit einer inneren Trennfuge, Mittelwert 0,011 mm

\[f_Z = 0,011 \text{ mm} \]

Vorspannkraftverlust durch Setzen der Verbindung:

\[F_Z = \frac{f_Z}{(\delta_S + \delta_T)} = 0,112 \text{ kN} \]

Erforderliche Montagevorspannkraft:

\[F_{VM} = F_{KI} + F_B \cdot (1 - \Phi) + F_Z = 76,31 \text{ kN} \]

\[F_{VM}/F_{sp} = 0,64 < 1 \]

Drehmomentgesteuertes Anziehen:

erforderliches Anziehmoment:

\[M_A = M_{sp} = 302,00 \text{ Nm} \]

Querschnitt

\[A_{sp} = 100\cdot\text{TAB("Verbindungen/Sch")}; A_k; S\text{G}=\text{Schraube} = 144,00 \text{ mm}^2 \]

\[\Phi \cdot F_B \cdot 10^3 \]

\[0,1 \cdot R_{p0,2} \cdot A_{sp} = 0,070 \leq 1 \]

Die maximale Schraubenkraft wird beim Anziehen nicht Überschritten.

Überprüfung der Dauerhaltbarkeit:

schwellend wirkende Betriebskraft:

\[F_a = \frac{F_B}{2 \cdot \Phi} \cdot 10^3 = 476,00 \text{ N} \]

\[\sigma_a = \frac{F_a}{A_3} = 3,31 \text{ N/mm}^2 \]

Schlußvergütetes Gewinde:

\[\sigma_A = 0,85 \cdot \left(\frac{150}{d} + 45 \right) = 46,22 \text{ N/mm}^2 \]

\[\frac{\sigma_a}{\sigma_A} = 0,07 < 1 \]

Flächenpressung genau:

\[p = \frac{F_{sp} + \Phi \cdot F_B}{A_p} \cdot 10^3 = 566,19 \text{ N/mm}^2 \]

\[\frac{p}{P_G} = 0,81 < 1 \]
Entwurfsberechnung einer Schraube:

Belastung:
Von der Schraube aufzunehmende Querkraft:
Querkraft $F = 12000,00 \text{ N}$
axiale Betriebskraft $F_B = 0,00 \text{ N}$

System:
Art des Anziehens:
Art = GEW("Verbindungen/AnzF";AzV;) = Streckgrenz- o. drehwinkelgesteuertes
Anzahl der Schrauben:
$n = 4$
Festigkeit der Schraube:
$SF = GEW("Material/Schr";FK;) = 12.9$
Schraubenart:
Typ = GEW("Beiwerte/Redfakt";Bez;) = Schaftschraube
Reibungszahl $\mu = 0,14$
$\beta = 1,1$ für Schaftschrauben
$\beta = 0,8$ für Ganzgewindeschrauben
$\beta = 0,6$ für Dehnschrauben
Nachgiebigkeitsfaktor $\beta = 1,10$
Setzbetrag $f_Z = 0,011 \text{ mm}$
Klemmlänge $l_K = 45 \text{ mm}$
E-Modul $E = 210000 \text{ N/mm}^2$
$m_{p,0.2} = TAB("Material/Schr"; R_{p0.2}; FK=SF) = 1080,00 \text{ N/mm}^2$
Mittelwerte für Anziehfaktoren
$k_A = TAB("Verbindungen/AnzF";k_A;AzV=Art) = 1,30$
$k = TAB("Beiwerte/Redfakt"; k; Bez=Typ; \mu_3=\mu) = 1,24$

Berechnung:
$F_{KI} = \frac{F}{n \cdot \mu} = 21429 \text{ N}$
$A = \frac{F_{KI} + F_B}{\frac{m_{p,0.2} \cdot \beta \cdot E \cdot f_z}{k_A \cdot k \cdot l_K}} = 34,93 \text{ mm}^2$
$d = \sqrt{4 \cdot \frac{A}{k}} = 6,67 \text{ mm}$
gewählt Schraube = GEW("Verbindungen/Schr"; SG; d>d) = M 12
Gelenkstiftverbindungen

Belastung:
Kraft $F = 200 \text{ N}$

System:
Der Stift besteht aus einem härteren Werkstoff als die Bauteile.
Durchmesser Stift/Bolzen $d = 6 \text{ mm}$
Innenbauteildicke $b = 14 \text{ mm}$
Außenbauteildicke $a = 10 \text{ mm}$

Lastfall $\text{LF} = \text{GEW(Verbindungen/StBo;LF)} = \text{schwellend}$

Werkstoff Außenbauteil
$\text{WK}_a = \text{GEW(Verbindungen/StBo;BT)} = \text{S235}$
Sitzart $\text{SA}_a = \text{GEW(Verbindungen/StBo;S)} = \text{Gleitsitz}$

Werkstoff Innenbauteil
$\text{WK}_b = \text{GEW(Verbindungen/StBo;BT)} = \text{S235}$
Sitzart $\text{SA}_b = \text{GEW(Verbindungen/StBo;S)} = \text{Sitz mit gekerbtem Teil}$

$p_{azul} = \text{TAB(Verbindungen/StBo}; p; \text{LF=LF; BT=WK}_a; S=\text{SA}_a) = 24 \text{ N/mm}^2$
$\sigma_{bzul,1} = \text{TAB(Verbindungen/StBo}; \sigma; \text{LF=LF; S=SA}_a) = 140 \text{ N/mm}^2$
$\tau_{azul,1} = \text{TAB(Verbindungen/StBo}; \tau; \text{LF=LF; S=SA}_a) = 60 \text{ N/mm}^2$

$p_{izul} = \text{TAB(Verbindungen/StBo}; p; \text{LF=LF; BT=WK}_b; S=\text{SA}_b) = 52 \text{ N/mm}^2$
$\sigma_{bzul,2} = \text{TAB(Verbindungen/StBo}; \sigma; \text{LF=LF; S=SA}_b) = 120 \text{ N/mm}^2$
$\tau_{azul,2} = \text{TAB(Verbindungen/StBo}; \tau; \text{LF=LF; S=SA}_b) = 50 \text{ N/mm}^2$

$\tau_{azul} = \text{MIN(}\tau_{azul,1}; \tau_{azul,2}) = 50 \text{ N/mm}^2$
$\sigma_{bzul} = \text{MIN(}\sigma_{bzul,1}; \sigma_{bzul,2}) = 120 \text{ N/mm}^2$

Berechnung:
Querschnitt Stift/Bolzen $A = \frac{\pi d^2}{4} = 28,27 \text{ mm}^2$
Widerstandsmoment $W_b = \frac{\pi d^3}{32} = 21,21 \text{ mm}^2$
Pressungen

Lochwand im Außenbauteil \(p_a = \frac{F}{2 \cdot a \cdot d} \) = 1,67 N/mm²

Lochwand im Innenbauteil \(p_i = \frac{F}{b \cdot d} \) = 2,38 N/mm²

Spannungen Stift/Bolzen

Scherspannung \(\tau = \frac{F}{2 \cdot A} \) = 3,54 N/mm²

Biegespannung \(\sigma_b = \frac{F \cdot (a + b / 2)}{4 \cdot W_b} \) = 40,08 N/mm²

Nachweis:

\(\frac{p_a}{p_{azul}} = 0.07 \leq 1 \)

\(\frac{p_i}{p_{izul}} = 0.05 \leq 1 \)

\(\frac{\tau}{\tau_{azul}} = 0.07 \leq 1 \)

\(\frac{\sigma_b}{\sigma_{bzul}} = 0.33 \leq 1 \)
Haltbarkeit der Schraubenverbindung

Kräfte an der Schraubenverbindung:
axiale Betriebskraft $F_A = 14,00$ kN
bei schwingender Betriebslängskraft:
Oberkraft des Lastspiels $F_{AO} = 14,00$ kN
Unterkraft des Lastspiels $F_{AU} = -10,00$ kN
Angriffspunkt:
Klemmlängenfaktor $n = 0,5$

Maße der Verbindung:
Länge $l_1 = 15,00$ mm
Länge $l_2 = 40,00$ mm
Länge $l_3 = 15,00$ mm
Klemmlänge der Schraubverb. $L_K = 56,00$ mm
E-Modul $E = 210,00$ kN/mm²

Schraube mit metrischem ISO-Gewinde:
gewählte Schraube $SCHR = \text{GEW("Verbindungen/Schr";SG;)} = M 12$
gewählte Festigkeit $FK = \text{GEW("Verbindungen/Schr";FK;)} = 10.9$
Mindestwerte Streckgrenze R_e bzw. Dehngrenze $R_{p0,2}$
$R = \text{TAB("Material/Schr";R_{Wm};FK = FK)} = 940,00$ N/mm²
maximale Montagevorspannkraft $F_{M_{max}} = 26,30$ kN
Muttern- und Kopfauflagedurchmesser $D_K = 14,60$ mm
Durchmesser des Durchgangsloches $D_l = 11,00$ mm
Richtwert für den Anziehfaktor $\alpha_A = 1,60$
Ausschlagfestigkeit des Kerns von Regelgewinden unter Vorspannung
Ausschlagfestigkeit $\sigma_A = 50,00$ N/mm²

Ausführung:
Schaftschraube (1) oder Taillenschraube (2) Art = 1
Reibungszahl im Gewinde $\mu_G = 0,10$
Reibungszahl an der Auflagefläche $\mu_K = 0,16$

angeschraubtes Bauteil:
E-Modul $E_B = 130,00$ kN/mm²
Breite des Bauteils $D_A = 35,00$ mm
zulässige Flächenpressung $p_{Bzul} = 850,00$ N/mm²
Lochanfasung $a = 0,50$ mm
Tabellenwerte:

Steigung:
\[P = \text{TAB}("Abmessungen/Schraub"; P; Bez=SCHR) = 1,75 \text{ mm} \]

Durchmesser:
\[d = \text{TAB}("Abmessungen/Schraub"; d; Bez=SCHR) = 12,00 \text{ mm} \]

Flankendurchmesser Gewinde:
\[d_2 = \text{TAB}("Abmessungen/Schraub"; d_2; Bez=SCHR) = 10,86 \text{ mm} \]

Kerndurchmesser:
\[d_3 = \text{TAB}("Abmessungen/Schraub"; d_3; Bez=SCHR) = 9,85 \text{ mm} \]

Spannungsquerschnitt:
\[A_s = \text{TAB}("Abmessungen/Schraub"; A_s; Bez=SCHR) = 84,248 \text{ mm}^2 \]

Querschnitt:
\[A = \text{TAB}("Abmessungen/Schraub"; A; Bez=SCHR) = 113,000 \text{ mm}^2 \]

Taillenquerschnitt:
\[A_T = \text{TAB}("Abmessungen/Schraub"; A_T; Bez=SCHR) = 63,61 \text{ mm}^2 \]

Kernquerschnitt:
\[A_k = \text{TAB}("Abmessungen/Schraub"; A_k; Bez=SCHR) = 76,23 \text{ mm}^2 \]

Berechnung der Nachgiebigkeit:

Ersatzlänge für die Verformung im Gewinde \(L_M = 0,4 \times d \) = 4,80 mm

\[\delta_s = \frac{1}{E \times 10^3 \left(\frac{l_1}{A} + \frac{l_2}{A_T} + \frac{l_3}{A_k} + \frac{l_M}{A} \right)} = 4,766\times10^{-6} \text{ mm/N} \]

Ersatzquerschnitt:

\[x_1 = \sqrt[3]{\frac{L_K \times D_K}{D_A^2}} = 0,87 \]

\[x_2 = \sqrt[3]{\frac{L_K \times D_K}{(L_K + D_K)^2}} = 0,55 \]

\[A_{B1} = \frac{\pi}{4} \left(D_A^2 - D_l^2 \right) = 867,08 \text{ mm}^2 \]

\[A_{B2} = \frac{\pi}{4} \left(D_K^2 - D_l^2 \right) + \frac{\pi}{8} D_K \left(D_A - D_K \right) \left(x_1 + 1 \right)^2 - 1 \] = 364,42 mm²

\[A_{B3} = \frac{\pi}{4} \left(D_K^2 - D_l^2 \right) + \frac{\pi}{8} D_K \times L_K \times \left(x_2 + 1 \right)^2 - 1 \] = 522,68 mm²

endgültiger Ersatzquerschnitt:
\[A_B = \text{WENN}(D_A \geq (D_K + L_K); A_{B3}; \text{WENN}(D_A \leq D_K; A_{B1}; A_{B2})) = 364,42 \text{ mm}^2 \]

Nachgiebigkeit des Bauteils \(\delta_B = \frac{L_K}{E_B \times 10^3 \times A_B} = 1,182\times10^{-6} \text{ mm/N} \)

Kraftverhältnis \(\Phi_K = \frac{\delta_B}{\delta_B + \delta_s} = 0,199 \)
Setzbeträge:
Kraftrichtung
KR = GEW("Beiwerte/Setzbetr";Kraft;) = Längskraft
Rautiefe der Oberfläche \(R_z \) = 16,0 µm
im Gewinde
\(f_{z,G} = TAB("Beiwerte/Setzbetr";f_{z,G};Kraft=KR;R_z=R_z)*10^{-3} \) = 3,0*10^{-3} mm
je Kopf- o. Mutterauflage
\(f_{z,K} = TAB("Beiwerte/Setzbetr";f_{z,K};Kraft=KR;R_z=R_z)*10^{-3} \) = 3,0*10^{-3} mm
Anzahl \(n_K \) = 1
je innere Trennfuge
\(f_{z,TF} = TAB("Beiwerte/Setzbetr";f_{z,TF};Kraft=KR;R_z=R_z)*10^{-3} \) = 2,0*10^{-3} mm
Anzahl \(n_{TF} \) = 1
Summe der Setzbeträge \(f_z = f_{z,G} + f_{z,K} * n_K + f_{z,TF} * n_{TF} \) = 8,0*10^{-3} mm

Vorspannkraftverlust \(F_Z = f_z * \Phi_K / \delta_B * 10^{-3} \) = 1,35 kN
Maximale Vorspannkraft \(F_{Vmax} = F_{Mmax} - F_Z \) = 24,95 kN
Minimale Vorspannkraft \(F_{Vmin} = F_{Mmax} / \alpha_A - F_Z \) = 15,09 kN

Berechnung der Einsatzgrenzen:
Differenzkraft in der Schraube \(F_{SA} = n * \Phi_K * F_A \) = 1,39 kN
Differenzkraft im Bauteil \(F_{BA} = F_A - F_{SA} \) = 12,61 kN
vorläufige Größtkraft der Schraube:
\(F_{Smaxv} = F_{Vmax} + F_{SA} \) = 26,34 kN
\(F_{Sminv} = F_{Vmin} + F_{SA} \) = 16,48 kN
errechnete Restklemmkraft der Bauteile:
\(F_K = F_{Sminv} - F_A \) = 2,48 kN
erforderliche Mindestklemmkraft der Bauteile nach den Erfordernissen der Konstruktion:
\(F_{Kerf} = \) 8,00 kN

Soll mit der erforderlichen Klemmkraft(1) oder mit der errechneten Klemmkraft(2) weitergerechnet werden ?
\(f = 1 \)

mittlerer Auflageradius \(r_m = 0,25 * (D_K + D_l) \) = 6,40 mm
erforderliche maximale Montagevorspannkraft:
\(F_{Mmax} = \) WENN(f=1; \(\alpha_A * (F_Z + F_{BA} + F_{Kerf}); \) WENN(f=2; \(\alpha_A * (F_Z + F_{BA} + F_{K}); 0)) = 35,14 kN
vorzuschreibendes Schraubenanziehmoment:
\(M_{Amax} = F_{Mmax} * (0,16 * P + 0,58 * \mu_G * d_2 + \mu_K * r_m) \) = 67,96 Nm
Bei schwingender Betriebskraft:
Kraftamplitude \(F_a = 0,5 * n * \Phi_K * (F_Ao - F_Au) \) = 1,19 kN
Mittelkraft \(F_m = F_{Smaxv} - F_a \) = 25,15 kN
Überprüfung der Haltbarkeit der Schraubenverbindung

Spannungsdiﬀerenz:
\[
\sigma_{sa} = \text{Wenn}(\text{Art}=1;F_{SA} \times 10^3/A_s;\text{Wenn}(\text{Art}=2;F_{SA} \times 10^3/A_T;0)) = 16,50 \text{ kN}
\]
\[
\frac{\sigma_{sa}}{0,1 \times R} = 0,18 \leq 1
\]

Spannungsausschlag \(\sigma_a = F_a \times 10^3 / A_k = 15,61 \text{ N/mm}^2\)

zulässiger Spannungsausschlag \(\sigma_{azul} = 0,9 \times \sigma_A = 45,00 \text{ N/mm}^2\)

maximale Vorspannkraft \(F_{Vmax} = F_{Mmax} - F_Z = 33,79 \text{ kN}\)

Größtkraft der Schraube \(F_{Smax} = F_{Vmax} + F_{SA} = 35,18 \text{ kN}\)

gepreßte Fläche zwischen Schraubenkopf/Bauteil:
\[
A_p = \left(D_K^2 - (D_l + 2 \times a)^2 \right) \cdot \frac{\pi}{4} = 54,32 \text{ mm}^2
\]

Flächenpressung an der Kopfauflagefläche:
\[
p_B = \frac{F_{Smax} \times 10^3}{A_p} = 647,64 \text{ N/mm}^2
\]

Nachweis:
\[
p_B / p_{Bzul} = 0,76 \leq 1
\]
Kegelpressverbindung:

Abmessungen:
- Durchmesser \(D_1 = 62 \text{ mm} \)
- Fugenlänge \(l = 55 \text{ mm} \)
- Einstellwinkel \(\alpha = \arctan \left(\frac{1}{10} \right) = 5,71^\circ \)

Randbedingungen:
- zu übertragende Leistung \(P = 8,00 \text{ kW} \)
- bei Umdrehungen \(n = 100 \text{ 1/min} \)
- dynamische Betriebsverhältnisse:
- Anwendungsfaktor \(K_A = 1,20 \)

Material:
- Außen:
 - Vergütungsstahl \(R_{p0,2} = 600,00 \text{ N/mm}^2 \)
 - E-Modul \(E_A = 210000,00 \text{ N/mm}^2 \)
 - Querdehnzahl \(v_A = 0,30 \)
- Innen:
 - Getriebewelle aus E295
 - E-Modul \(E_I = 210000,00 \text{ N/mm}^2 \)
 - Querdehnzahl \(v_I = 0,30 \)

Erforderliche Einpresskraft:
- Haftsicherheit \(S_H = 1,20 \ (1,2 - 1,5) \)
- Haftbeiwert \(\mu = 0,10 \)
- Reibwinkel \(\rho = \arctan(\mu) = 5,71 \)
- Durchmesser \(D_2 = \frac{D_1 - 2 \cdot l \cdot \tan(\alpha/2)}{2} = 56,51 \)
- mittlerer Durchmesser \(D_{mF} = \frac{D_1 + D_2}{2} = 59,26 \text{ mm} \)
- Nenndrehmoment \(T_{nenn} = 9550 \cdot P / n = 764,00 \text{ Nm} \)
- Federspannung \(F_e = \frac{2 \cdot K_A \cdot S_H \cdot T_{nenn} \cdot \sin \left(\rho + \frac{\alpha}{2} \right)}{D_{mF} \cdot \sin(\rho)} = 55,58 \text{ kN} \)
Fugenpressung bei der Montage:

\[
F_e \cdot \cos(\rho) \cdot \cos\left(\frac{\alpha}{2}\right) \cdot 10^3 \\
\rho = \frac{10^3}{D_mF} \cdot \pi \cdot l \cdot \sin\left(\rho + \frac{\alpha}{2}\right)
\]

\[= 36,22 \text{ N/mm}^2\]

Aufschub:

Voraussetzung Kegelaußen- und Innenwinkel gleich groß.
Rauheit innen nach DIN 4766 \(R_i = 16,00 \mu m \)
Rauheit außen nach DIN 4766 \(R_a = 16,00 \mu m \)
Glättung \(G = 0,8 \cdot (R_a + R_i) = 25,60 \mu m \)
Durchmesserverhältnis \(Q_A = 0,50 \)
Durchmesserverhältnis \(Q_I = 0,00 \)
Sicherheit gegen plastisches Verformen \(S_{pA} = 1,10 \)

Hilfsgröße:
\[K = \frac{E_A \cdot \left(1 + Q_I^2\right)}{E_I \cdot \left(1 - Q_I^2\right)} + \frac{1 + Q_A^2}{1 - Q_A^2} \cdot v_A = 2,67\]

Mindesthaftmaß:
\[Z_k = \frac{p_F \cdot D_mF \cdot K}{E_A \cdot \cos\left(\frac{\alpha}{2}\right)} = 0,027 \text{ mm}\]

Mindestaufschub:
\[a_{min} = \frac{Z_k \cdot 10^3 + G}{2 \cdot \tan\left(\frac{\alpha}{2}\right) \cdot 10^3} = 0,53 \text{ mm}\]

\[p_{Fg} = \frac{R_{p0,2}, 1 - Q_A^2}{S_{pA} \sqrt{3}} = 236,19 \text{ N/mm}\]

höchstzulässiges Haftmaß:
\[Z_g = \frac{p_{Fg} \cdot D_mF \cdot K}{E_A \cdot \cos\left(\frac{\alpha}{2}\right)} = 0,178 \text{ mm}\]

Maximalaufschub:
\[a_{max} = \frac{Z_g \cdot 10^3 + G}{2 \cdot \tan\left(\frac{\alpha}{2}\right) \cdot 10^3} = 2,04 \text{ mm}\]
Wellen-Nabe-Verbindung (Keilwellenverbindung)

Belastung:
zu übertragendes Moment \(M = 2350,00 \text{ Nm} \)
Belastungsform \(BF = \text{GEW("Verbindungen/Flankpreß";Bez;)} = \text{wechselnd leichte Stöße} \)

System:
Bauteil \(BT = \text{Keilwellen} \)
Nabenwerkstoff \(NB = \text{GEW("Verbindungen/Nabverb";Bez;)} = \text{Stahl} \)
Reihe \(Rh = \text{GEW("Abmessungen/KWNP";Reihe;) = Leichte Reihe} \)
Kürzel (IZ) steht für Innenzentrierung und (FZ) für Flankenzentrierung.
Anzahl der Keile am Umfang \(i = \text{GEW("Abmessungen/KWNP";Anz;Reihe=Rh;Zg=z)} = 10,00 \)
Innendurchmesser der Keilwelle \(d_1 = \text{GEW("Abmessungen/KWNP";d_1;Reihe=Rh;Zg=z;Anz=i)} = 72,00 \text{ mm} \)
Außendurchmesser der Keilwelle \(d_2 = \text{GEW("Abmessungen/KWNP";d_2;d_1=d_1)} = 78,00 \text{ mm} \)
Traglänge der Verbindung \(l_t = 65,00 \text{ mm} \)

Berechnung:
\(p_0 = \text{TAB("Verbindungen/Nabverb"; p_0; Bez=NB)} = 150,00 \text{ N/mm}^2 \)
Faktor \(f = \text{TAB("Verbindungen/Flankpreß"; f; Bez=BF; BT=BT)} = 0,45 \)
Tragfaktor \(k = \text{WENN(z="IZ";0,75;WENN(z="FZ";0,9;0))} = 0,75 \)
mittlerer Radius der Keilwelle:
\(r_m = \frac{d_1 + d_2}{4} = 37,50 \text{ mm} \)
Keilhöhe \(h = \frac{d_2 - d_1}{2} = 3,00 \text{ mm} \)
Umfangskraft an der Welle:
\(F_u = \frac{M}{r_m} \cdot 10^3 = 62667 \text{ N} \)
vorhandene Flankenpressung:
\(p = \frac{F_u}{h \cdot l_t \cdot i \cdot k} = 42,85 \text{ N/mm}^2 \)
zulässige Flankenpressung:
\(p_{zul} = \frac{p_0 \cdot f}{p_{zul}} = 67,50 \text{ N/mm}^2 \)
Nachweis:
\(p / p_{zul} = 0,63 < 1 \)
Klebverbindung

Vorwerte:
Zugscherbeanspruchter einfacher Überlappstoß
Durchmesser \(d = 30,00 \text{ mm} \)
Überlappungslänge \(l_\delta = 40,00 \text{ mm} \)
nach Herstellerangabe
Bindfestigkeit \(\tau_{KB} = 14,00 \text{ N/mm}^2 \)
Sicherheit \(S = 1,50 \)

Berechnung:
Klebfugenbreite:
\(b = d \cdot \pi = 94,25 \text{ mm} \)
Kontaktfläche:
\(A_{KI} = b \cdot l_\delta = 3770,00 \text{ mm}^2 \)
Die maximal übertragbare Kraft:
\(F_{max} = \frac{A_{KI} \cdot \tau_{KB}}{S \cdot 10^3} = 35,19 \text{ kN} \)
Längsbeanspruchte Schraubenverbindung

System:

gewählte Schraube
SCHR = GEW("Verbindungen/Schr";SG;) = M 12
Muttern- und Kopfaufgedurchmesser $D_K = 18,00 \text{ mm}$
Durchmesser des Durchgangsloches $D_1 = 13,50 \text{ mm}$
Länge $l_1 = 12,00 \text{ mm}$
Länge $l_2 = 30,00 \text{ mm}$
Länge $l_3 = 12,00 \text{ mm}$
Klemmlänge der Schraubverb. $L_K = 46,00 \text{ mm}$
E-Modul $E = 210,00 \text{ kN/mm}^2$

angeschraubtes Bauteil:
E-Modul $E_B = 130,00 \text{ kN/mm}^2$
Breite des Bauteils $D_A = 35,00 \text{ mm}$
maximale Montagevorspannkraft $F_{M_{\text{max}}} = 26,30 \text{ kN}$
Richtwert für den Anziehfaktor $\alpha_A = 1,60$

Tabellenwerte:
Flankendurchmesser:
$d = \text{TAB("Abmessungen/Schraub"; d; Bez=SCHR)} = 12,000 \text{ mm}$
Spannungsquerschnitt:
$A_s = \text{TAB("Abmessungen/Schraub"; A_s; Bez=SCHR)} = 84,248 \text{ mm}^2$
Querschnitt:
$A = \text{TAB("Abmessungen/Schraub"; A; Bez=SCHR)} = 113,000 \text{ mm}^2$
Taillenquerschnitt:
$A_T = \text{TAB("Abmessungen/Schraub"; A_T; Bez=SCHR)} = 63,605 \text{ mm}^2$
Kernquerschnitt:
$A_k = \text{TAB("Abmessungen/Schraub"; A_k; Bez=SCHR)} = 76,23 \text{ mm}^2$
Berechnung:

Ersatzlänge für die Verformung im Gewinde \(l_M = 0.4 \times d \) = 4,80 mm

\[
\delta_s = \frac{1}{E \times 10^3} \left(\frac{l_1}{A} + \frac{l_2}{A_T} + \frac{l_M}{A} \right) = 3,704 \times 10^{-6} \text{ mm/N}
\]

Ersatzquerschnitt:

\[
x_1 = \sqrt{\frac{L_K \times D_K}{D_A^2}} = 0,88
\]

\[
x_2 = \sqrt{\frac{L_K \times D_K}{(L_K + D_K)^2}} = 0,59
\]

\[
A_{B1} = \frac{\pi}{4} \left(D_A^2 - D_1^2 \right) = 818,97 \text{ mm}^2
\]

\[
A_{B2} = \frac{\pi}{4} \left(D_K^2 - D_1^2 \right) + \frac{\pi}{8} D_K \times (D_A - D_K) \times (x_1 + 1)^2 - 1 = 415,88 \text{ mm}^2
\]

\[
A_{B3} = \frac{\pi}{4} \left(D_K^2 - D_1^2 \right) + \frac{\pi}{8} D_K \times (x_2 + 1)^2 - 1 = 608,20 \text{ mm}^2
\]

endgültiger Ersatzquerschnitt:

\[
A_B = \text{WENN}(D_A \geq (D_K + L_K); A_{B3}; \text{WENN}(D_A \leq D_K; A_{B1}; A_{B2})) = 415,88 \text{ mm}^2
\]

Nachgiebigkeit des Bauteils \(\delta_B = \frac{L_K}{E \times 10^3 \times A_B} = 0,851 \times 10^{-6} \text{ mm/N} \)

Kraftverhältnis \(\Phi_K = \frac{\delta_B}{\delta_B + \delta_s} = 0,187 \)

Setzbeträge:

Kraftrichtung

\(K_R = \text{GEW}("\text{Beiwerke/Setzbetr};\text{Kraft}); = \text{Längskraft} \)

Rautiefe der Oberfläche \(R_z = 16,0 \mu m \)

im Gewinde

\(f_{z,G} = \text{TAB}("\text{Beiwerke/Setzbetr};f_{z,G};\text{Kraft}=KR;R_z = R_z) \times 10^{-3} = 3,0 \times 10^{-3} \text{ mm} \)

je Kopf- o. Mutterauflage

\(f_{z,K} = \text{TAB}("\text{Beiwerke/Setzbetr};f_{z,K};\text{Kraft}=KR;R_z = R_z) \times 10^{-3} = 3,0 \times 10^{-3} \text{ mm} \)

Anzahl \(n_K = 1 \)

je innere Trennfuge

\(f_{z,TF} = \text{TAB}("\text{Beiwerke/Setzbetr};f_{z,TF};\text{Kraft}=KR;R_z = R_z) \times 10^{-3} = 2,0 \times 10^{-3} \text{ mm} \)

Anzahl \(n_{TF} = 1 \)

Summe der Setzbeträge \(f_z = f_{z,G} + f_{z,K} \times n_K + f_{z,TF} \times n_{TF} = 8,0 \times 10^{-3} \text{ mm} \)

Verlängerung der Schraube beim Anziehen

\(f_{sm} = F_{Mmax} \times \delta_s \times 10^3 = 0,097 \text{ mm} \)

Vorspannkraftverlust \(F_z = f_z \times \Phi_K / \delta_B \times 10^{-3} = 1,76 \text{ kN} \)

Maximale Vorspannkraft \(F_{Vmax} = F_{Mmax} - F_z = 24,54 \text{ kN} \)

Minimale Vorspannkraft \(F_{Vmin} = F_{Mmax} / \alpha_A - F_z = 14,68 \text{ kN} \)
Wellen-Naben-Verbindung (Längskeilverbindung)

Belastung:
zu übertragendes Moment \(M = 450,00 \text{ Nm} \)
Belastungsform
\(BF = \text{GEW("Verbindungen/Flankpreß";Bez;)} = \) wechselnd leichte Stöße

System:
Nabenwerkstoff \(NB = \text{GEW("Verbindungen/Nabverb";Bez;)} = \) Grauguß
Wellendurchmesser \(d = 60,0 \text{ mm} \)
Anzahl der Keile am Umfang \(i = 1 \)
Traglänge der Verbindung \(l_t = 90,0 \text{ mm} \)

Berechnung:

Nabennuttiefe:
\(t_2 = \text{TAB("Abmessungen/Keile"; t_2; d_1≤d; d_2≥d)} = 3,4 \text{ mm} \)

\(p_0 = \text{TAB("Verbindungen/Nabverb"; p_0; Bez=NB)} = 90,00 \text{ N/mm}^2 \)
Faktor \(f = \text{TAB("Verbindungen/Flankpreß"; f; Bez=BF; BT="Nutkeil") = 0,60} \)

Umfangskraft an der Welle:
\(F_u = \frac{M \cdot 10^3}{d / 2} = 15000 \text{ N} \)

vorhandene Flankenpressung:
\(p = \frac{F_u}{t_2 \cdot l_t \cdot i} = 49,02 \text{ N/mm}^2 \)

zulässige Flankenpressung:
\(p_{zul} = p_0 \cdot f = 54,00 \text{ N/mm}^2 \)

Nachweis:
\(p / p_{zul} = 0,91 < 1 \)
Längsstift-Verbindung

Belastung:
zu übertragendes Drehmoment \(T = 120 \text{ Nm} \)
Lastfall \(LF = \text{GEW("Verbindungen/StBo"};LF;) = \) ruhend

System:
Bauteilwerkstoff
\(BT = \text{GEW("Verbindungen/StBo"};BT;) = \) GG
Sitzart \(S = \text{GEW("Verbindungen/StBo"};S;) = \) Gleitsitz

Stiftdurchmesser \(d = 10,0 \text{ mm} \)
Anzahl der Keile am Umfang \(i = 1 \)
Traglänge der Verbindung \(l = 65,0 \text{ mm} \)
Wellendurchmesser \(D = 45,0 \text{ mm} \)

Berechnung:
Pressung der Lochwände in den Bauteilen:
\[
p = \frac{4 \cdot T \cdot 10^3}{d \cdot l \cdot D} = 16,41 \text{ N/mm}^2
\]

Scherkraft im Stiftlängenquerschnitt:
\[
\tau_a = \frac{2 \cdot T \cdot 10^3}{d \cdot l \cdot D} = 8,21 \text{ N/mm}^2
\]

zulässige Pressung der Lochwände:
\(p_{zul} = 0,5 \cdot \text{TAB("Verbindungen/StBo"}; p; LF=LF; BT=BT; S=S) = 20,00 \text{ N/mm}^2 \)

zulässige Scherspannung:
\(\tau_{zul} = 0,5 \cdot \text{TAB("Verbindungen/StBo"}; \tau_a; LF=LF; BT=BT; S=S) = 40,00 \text{ N/mm}^2 \)

Nachweise:
\[
p / p_{zul} = 0,82 < 1
\]
\[
\tau_a / \tau_{zul} = 0,21 < 1
\]
Lötverbindung

System:

Durchmesser \(d = 12 \text{ mm} \)
Stahl = GEW("Material/Werkstoff";Bez;) = S235
Hartlot = GEW("Verbindungen/Hartlot";Bez;) = L-Ag44
Anwendungsfaktor \(K_A \) (stoßfreie Belastung)
Anwendungsfaktor \(K_A = 1,00 \)
Erforderliche Sicherheit \(S = 3,00 \)

\[R_m = \text{TAB("Material/Werkstoff"; } R_{mN}; \text{Bez}=\text{Stahl}) = 360 \text{ N/mm}^2 \]
\[\tau_{IB} = \text{TAB("Verbindungen/Hartlot"; } \tau_{IB}; \text{Bez}=\text{Hartlot; GW}=\text{Stahl}) = 205 \text{ N/mm}^2 \]

Berechnung:

\[\text{Einstecktiefe } l_g = \frac{R_m \cdot d}{\tau_{IB}^4} = 5,27 \text{ N/mm}^2 \]

\[\text{Lötnahtfläche } A_l = \pi \cdot d \cdot l_g = 198,67 \text{ mm}^2 \]

Die übertragbare Längskraft:

\[F = \frac{\tau_{IB} \cdot A_l}{K_A \cdot S \cdot 10^3} = 13,58 \text{ kN} \]
Montagevorspannkraft und Schraubenbeanspruchung

System:

gewählte Schraube
$\text{SCHR} = \text{GEW(}"\text{Abmessungen/SchrK}"; S;\text{)} = \text{M12}$

gewählte Festigkeit
$\text{FK} = \text{GEW(}"\text{Material/Schr}"; \text{FK};\text{)} = 10.9$

Ausführungsgüte Afg
$\text{GEW(}"\text{Abmessungen/DLSchr}"; \text{Art};\text{)} = \text{fein}$

Wird der Schraubenbolzen beim Anziehen auf Torsion beansprucht?
$\text{Abfrage} = \text{GEW(}"\text{Verbindungen/Abf}; \text{Ant};\text{)} = \text{ja}$
$\text{t} = \text{Wenn}(\text{Abfrage} = \text{"ja"}; 1; 2) = 1$

Schraubenart SA: Schaftschaube oder Taillenschraube
$\text{SA} = \text{GEW(}"\text{Verbindungen/Abf}; \text{SA};\text{)} = \text{Schaftschraube}$
$\text{Art} = \text{Wenn}(\text{SA} = \text{"Schaftschraube"}; 1; 2) = 1$

Ausnutzung der Streckgrenze $a = 90\%$
Reibungszahl im Gewinde $\mu_G = 0.10$
Reibungszahl an der Auflagefläche $\mu_K = 0.16$
Richtwert für den Anziehfaktor $\alpha_A = 1.70$

Tabellenwerte:

$\varnothing d = \text{TAB(}"\text{Abmessungen/Schraub}; d; \text{Bez=SCHR}\text{)} = 12,00 \text{ mm}$
$\varnothing d_2 = \text{TAB(}"\text{Abmessungen/Schraub}; d_2; \text{Bez=SCHR}\text{)} = 10,86 \text{ mm}$
$\varnothing d_s = \text{TAB(}"\text{Abmessungen/Schraub}; d_s; \text{Bez=SCHR}\text{)} = 10,36 \text{ mm}$
$\varnothing d_T = \text{TAB(}"\text{Abmessungen/Schraub}; d_T; \text{Bez=SCHR}\text{)} = 9,00 \text{ mm}$
$A_s = \text{TAB(}"\text{Abmessungen/Schraub}; A_s; \text{Bez=SCHR}\text{)} = 84,25 \text{ mm}^2$
$A_T = \text{TAB(}"\text{Abmessungen/Schraub}; A_T; \text{Bez=SCHR}\text{)} = 63,61 \text{ mm}^2$

Gewindesteigung $P = \text{TAB(}"\text{Abmessungen/Schraub}; P; \text{Bez=SCHR}\text{)} = 1,75 \text{ mm}$
Streckgrenze $R_{e_b} = \text{TAB(}"\text{Material/Schr}; R_{e_M}; \text{FK=FK}\text{)} = 940 \text{ N/mm}^2$

Auflagedurchmesser Schraubenkopf
$D_K = \text{TAB(}"\text{Abmessungen/SchrK}; D_K; \text{S=SCHR}\text{)} = 16,6 \text{ mm}$

Lochdurchmesser D_l
$D_l = \text{TAB(}"\text{Abmessungen/DLSchr}; D_l; \text{Art=Afg}; \text{GWD=d}\text{)} = 13,0 \text{ mm}$

maßgebender $\varnothing d_0 = \text{Wenn}(\text{Art}=1; d_s; \text{Wenn}(\text{Art}=2; d_T; 0)) = 10,36 \text{ mm}$

mittlerer Auflageradius $r_m = 0,25*(D_K + D_l) = 7,40 \text{ mm}$
Berechnung:

Beim Anziehen zugelassene Vergleichsspannung \(\sigma_v = R_e \cdot a \cdot 10^{-2} \)

zulässige Montagevorspannung:

\[
\sigma_{Mzul} = \frac{\sigma_v}{\sqrt{1 + 3 \cdot \left(\frac{2 \cdot d_2}{d_0} \cdot \left(\frac{0,32 \cdot P}{d_2} + 1,16 \cdot \mu_G \right) \right)^2}}
\]

\(\sigma_{Mzul} = \) WENN(\(t = 1; \sigma_{Mzul}; \) WENN(\(t = 2; \sigma_v; 0 \)) \)

zulässige Montagevorspannkraft:

\(F_{Mzul} = \) WENN(\(\text{Art}=1; A_s; \) WENN(\(\text{Art}=2; A_T; 0 \)) \) \(\cdot \sigma_{Mzul} \)

minimale Montagevorspannkraft:

\(F_{Mmin} = \) \(F_{Mzul} / \alpha_A \)

zulässiges Schraubenanziehmoment:

\(M_{Azul} = F_{Mzul} \cdot (0,16 \cdot P + 0,58 \cdot \mu_G \cdot d_2 + \mu_K \cdot r_m) \cdot 10^{-3} \)

\(M_{Azul} = 127,49 \text{ Nm} \)
Nietverbindung

System:
- Anzahl der Nieten \(n = 10,00 \) Stück
- zulässige Spannung \(\sigma_{w,zul} = 129 \text{ N/mm}^2 \)
- Anzahl der Scherfugen \(m = 1,0 \)
- \(\Sigma \) minimale Bauteildicke \(t_{\text{min}} = 11,00 \) mm

Belastung:
- \(F = 39,29 \) kN

Berechnung:
Für Abscheren wird der erforderliche Durchmesser bestimmt. für einschnittige Verbindungen gilt:
\[
\tau_{a,zul1} = 0,6 \times \sigma_{w,zul} = 77,40 \text{ N/mm}^2
\]
\[
\sigma_{l,zul1} = 1,5 \times \sigma_{w,zul} = 193,50 \text{ N/mm}^2
\]
für zweischnittige Verbindungen gilt:
\[
\tau_{a,zul2} = 0,8 \times \sigma_{w,zul} = 103,20 \text{ N/mm}^2
\]
\[
\sigma_{l,zul2} = 2,0 \times \sigma_{w,zul} = 258,00 \text{ N/mm}^2
\]
\[
\tau_{a,zul} = \text{WENN}(m=1; \tau_{a,zul1}; \tau_{a,zul2}) = 77,40 \text{ N/mm}^2
\]
\[
\sigma_{l,zul} = \text{WENN}(m=1; \sigma_{l,zul1}; \sigma_{l,zul2}) = 193,50 \text{ N/mm}^2
\]
erforderliche Nietquerschnittsfläche:
\[
A_{\text{erf}} = \frac{F \times 10^3}{\tau_{a,zul} \times m \times n} = 50,76 \text{ mm}^2
\]
erforderlicher Nietdurchmesser:
\[
d_{\text{erf}} = \sqrt[3]{\frac{4 \times F \times 10^3}{\tau_{a,zul} \times \pi \times m \times n}} = 8,04 \text{ mm}
\]
Gewählt:
Rohnietendurchmesser \(d_1 = 10 \) mm
Nietlochdurchmesser \(d = d_1 + 0,5 = 10,50 \) mm

Lochleibungsdruck:
\[
\sigma_{l} = \frac{F \times 10^3}{n \times d \times t_{\text{min}}} = 34,02 \text{ N/mm}^2
\]
\[
\frac{\sigma_{l}}{\sigma_{l,zul}} = 0,18 < 1
\]
Passfederverbindung:

Belastung:
zu übertragendes Moment $M = 620,00 \, \text{Nm}$
Belastungsform
$BF = \text{GEW("Verbindungen/Flankpreß","Bez;") = einseitig leichte Stöße}$

System:
- Bauteil BT = Paßfedern
- Namenwerkstoff $NB = \text{GEW("Verbindungen/Nabverb","Bez;") = Grauguß}$
- Form Passfeder
 - Form $= \text{GEW("Verbindungen/Abf;HPl","Bez;") = hohe Form}$
 - Kennzahl $k = \text{TAB("Verbindungen/Abf","k;HPl=Form") = 2}$
- Wellendurchmesser $d = 60,0 \, \text{mm}$
- Anzahl der Passfeder am Umfang $i = 2$
- Länge der Passfeder $l = 75,0 \, \text{mm}$

Berechnung:
- $b = \text{TAB("Verbindungen/Paßfe","b; d≤d") = 18 \, \text{mm}}$
- $h = \text{TAB("Verbindungen/Paßfe","h; d≤d") = 11 \, \text{mm}}$
- $t_1 = \text{TAB("Verbindungen/Paßfe","t; d≤d") = 7 \, \text{mm}}$
- $p_0 = \text{TAB("Verbindungen/Nabverb","p_0; Bez=NB") = 90,00 \, \text{N/mm}^2}$
- Faktor $f = \text{TAB("Verbindungen/Flankpreß","f; Bez=BF; BT=BT") = 0,70}$

Tragfaktor:
- $k = \text{WENN(i = 1 ; 1 ; WENN (i = 2; 0,75 ; 0)) = 0,75}$

Umfangskraft an der Welle:
- $F_u = \frac{M \cdot 10^3}{d/2} = 20667 \, \text{N}$

Tragende Länge der Passfeder:
- $l_t = l - b = 57,00 \, \text{mm}$

vorhandene Flankenpressung:
- $p = \frac{F_u}{(h - t_1) \cdot l_t \cdot i \cdot k} = 60,43 \, \text{N/mm}^2$

zulässige Flankenpressung:
- $p_{zul} = p_0 \cdot f = 63,00 \, \text{N/mm}^2$

Nachweis:
- $p / p_{zul} = 0.96 < 1$
System:

Bauteil BT = Polygonwellen
Profilleib. B = GEW("Abmessungen/Polyprof"; k;) = P4C
Werkstoff WS = GEW("Verbindungen/Nabverb"; Bez;) = Grauguß
Lastfall/ Belastungsform LF = GEW("Verbindungen/Flankpreß"; Bez;) = einseitig leichte Stöße

Belastung:
Drehmoment T = 4000,00 Nm

Abmessungen:
Traglänge der Verbindung l = 40,0 mm
Gleichdickdurchmesser d1 = 95,0 mm
d2 = TAB("Abmessungen/Polyprof"; d2; k=B; d1=d1) = 85,00 mm
e1 = TAB("Abmessungen/Polyprof"; e1; k=B; d1=d1) = # 0,00 mm
e = TAB("Abmessungen/Polyprof"; e; k=B; d1=d1) = 8,00 mm
e_r = TAB("Abmessungen/Polyprof"; e_r; k=B; d1=d1) = 2,50 mm

rechnerischer Durchmesser:
d_r = d2 + 2 * e = 101,00 mm

Berechnung:

zulässige Flächenpressung:
p_0 = TAB("Verbindungen/Nabverb"; p_0; Bez=WS) = 90,00 N/mm²
Faktor für die zulässige Flächenpressung:
f = TAB("Verbindungen/Flankpreß"; f; Bez=LF; BT=BT) = 1,00

p_zul = f * p_0 = 90,00 N/mm²

für Profil DIN 32711-A P3G d1 g6:

\[p = \frac{T \cdot 10^3}{l \cdot (2,36 \cdot d_1 \cdot e_1 + 0,05 \cdot d_1^2)} \]

\[p / p_zul = \# 0,00 < 1 \]

für Profil DIN 32712-B P4C d1 H7:

\[p = \frac{T \cdot 10^3}{l \cdot (\pi \cdot d_r \cdot e_r + 0,05 \cdot d_r^2)} \]

\[p / p_zul = 0,85 < 1 \]
Berechnung zylindrischer Pressverband (elastische Beanspruchung)

System:
zu übertragendes Drehmoment \(M = 550,0 \ \text{Nm} \)
zu übertragendes Längskraft \(F_l = 56,0 \ \text{N} \)
Haft sicherheit (Sicherheit gegen Rutschen) \(S_H = 1,80 \)
Haftbeiwert des Preßverband \(\nu = 0,17 \)
Sicherheit gegen plastische Verformung \(S_p = 1,20 \)

Abmessungen:
Fugendurchmesser \(D_F = 44,00 \ \text{mm} \)
Fugenlänge \(l_F = 75,00 \ \text{mm} \)
Außendurchmesser des Außenteils \(D_A = 70,00 \ \text{mm} \)
Innendurchmesser des Innenteils \(D_I = 30,00 \ \text{mm} \)

für das Außenteil \(R_{zA} = 10,00 \ \mu \text{m} \)
für das Innenteil \(R_{zI} = 6,00 \ \mu \text{m} \)

Elastizitätsmodul des Außenteils \(E_A = 210000,00 \ \text{N/mm}^2 \)
Elastizitätsmodul des Innenteils \(E_I = 210000,00 \ \text{N/mm}^2 \)
Querdehnzahl des Außenteils \(\mu_A = 0,30 \)
Querdehnzahl des Innenteils \(\mu_I = 0,30 \)
Streckgrenze des Außenteils \(R_{\sigma A} = 410,00 \ \text{N/mm}^2 \)
Streckgrenze des Innenteils \(R_{\sigma I} = 275,00 \ \text{N/mm}^2 \)

Berechnung:
Umfangskraft
\[
F_u = \frac{2 \cdot M \cdot 10^3}{D_F} = 25000,00 \ \text{N}
\]

Resultierende Kraft
\[
F_r = \sqrt{F_u^2 + F_l^2} = 25000,06 \ \text{N}
\]
erforderliche Haftkraft
\[F_F = F_r \cdot S_H = 45000,11 \text{ N} \]

erforderliche Fugenpressung
\[p_F = \frac{F_F}{D_F \cdot \pi \cdot I_F \cdot \nu} = 25,53 \text{ N/mm}^2 \]

Durchmesserverhältnisse:
\[Q_A = \frac{D_F}{D_A} = 0,63 \]
\[Q_I = \frac{D_I}{D_F} = 0,68 \]

Hilfsgröße:
\[K = \frac{E_A \cdot \left(1 + Q_I^2 \cdot \mu_I \right) + \left(1 + Q_A^2 \right) + \mu_A}{E_I \cdot \left(1 - Q_I^2 \right)} = 5,04 \]

kleinstes bezogenes wirksames Übermaß:
\[Z_w = \frac{K \cdot p_F \cdot 10^3}{E_A} = 0,61 \]

erforderliches kleinstes wirksames Übermaß:
\[U_w = Z_w \cdot D_F = 26,84 \mu \text{m} \]

Übermaßverlust:
\[U_v = 0,8 \cdot (R_{Z_A} + R_{Z_I}) = 12,80 \mu \text{m} \]

erforderliches Mindestübermaß:
\[U_{\text{min}} = U_w + U_v = 39,64 \mu \text{m} \]

für das Innenteil:
\[Z_{w1} = \frac{K \cdot \left(1 - Q_I^2 \right) \cdot R_{el} \cdot 10^3}{\sqrt{3} \cdot S_p \cdot E_A} = 1,71 \]
\[Z_{w2} = \frac{K \cdot R_{el} \cdot 10^3}{\sqrt{3} \cdot S_p \cdot E_A} = 3,18 \]
\[Z_{w3} = \frac{4 \cdot R_{el} \cdot 10^3}{\sqrt{3} \cdot \left(1 - Q_A^2 \right) \cdot E_A \cdot S_p} = 4,18 \]
\[Z_{wzu} = \text{WENN} (Q_I \neq 0; Z_{w1}; \text{WENN} (E_A \neq E_I \text{ UND } \mu_I \neq \mu_A; Z_{w2}; Z_{w3})) = 1,71 \]
für das Außenteil:

\[Z_{wA1} = \frac{K \cdot 10^3 \cdot (1 - Q_A^2) \cdot R_{eA}}{\sqrt{3} \cdot S_p \cdot E_A} = 2.86 \]

\[Z_{wA2} = \frac{2 \cdot R_{eA} \cdot 10^3}{\sqrt{3} \cdot S_p \cdot E_A} = 1.88 \]

\[Z_{wAzul} = \begin{cases} Z_{wA2} & \text{WENN}(Q_{I}=0 \text{ UND } E_A=E_I \text{ UND } \mu_I=\mu_A; Z_{wA2}; Z_{wA1}) \end{cases} = 2.86 \]

\[Z_{wzul} = \min(Z_{wzul}; Z_{wAzul}) = 1.71 \]

zulässiges wirksames Übermaß:

\[U_{wzul} = Z_{wzul} \cdot D_F = 75.24 \mu m \]

zulässiges Höchstübermaß:

\[U_{\text{max}} = U_{wzul} + U_V = 88.04 \mu m \]

Passung wählen:

gew.: TAB("Abmessungen/Üma"; Bez; D_{fu} \leq D_F; D_{fo} \geq D_F; U_k \geq U_{\text{min}}; U_g \leq U_{\text{max}}) = H7u6
Punktschweißverbindung

System
Kraft \(F \) = 5,00 kN

Schnittzahl der Verbindung wählen
Schnittigkeit \(m_S = \text{GEW} (\text{"Verbindungen/PSchw"}; m;) \) = einschnittig

Festigkeitswerte:
Werkstoff Zugfestigkeit \(R_m = 250 \text{ N/mm}^2 \)
Beanspruchungsart \(Bs = \text{GEW} (\text{"Verbindungen/PSchw"}; Bs;) \) = ruhend
zul. Scherspannung in der Schweißlinse
\(\tau_{wazul} = \text{TAB} (\text{"Verbindungen/PSchw"}; \tau_{wa}; Bs=Bs; R_m=R_m) \) = 60 N/mm²
zul. Leibungsdruck am Schweißbuckel
\(\sigma_{wlzul} = \text{TAB} (\text{"Verbindungen/PSchw"}; \sigma_{wL}; Bs=Bs; m=m_S; R_m=R_m) \) = 165 N/mm²
zul. Schubspannung in der Schweißlinse
\(\tau_{wszul} = \text{TAB} (\text{"Verbindungen/PSchw"}; \tau_{ws}; Bs=Bs; R_m=R_m) \) = 75 N/mm²
Scherfestigkeit der Schweißlinse \(\tau_B = 0,65 \cdot R_m \) = 163 N/mm²
Berechnung: (nicht benötigte Spannungsberechnungen löschen)

kleinste Bauteildicke
maßgebende Blechdicke \(s = 2,50 \text{ mm} \)
zugbeanspruchte Querschnittsfläche des Bauteils
\(S = 90,00 \text{ mm}^2 \)
Anzahl der Buckel im Anschluß
\(n = 3,00 \)
Schnittzahl der Verbindungen
\(m = 1 \)
errechneter Schweißpunktdurchmesser
\(d = \sqrt{\frac{25}{s}} = 7,91 \text{ mm} \)
der gewählter Schweißpunktdurchmesser für die weitere Berechnung sollte den Errechneten nicht überschreiten, auch wenn der vorhandene Schweißpunktdurchmesser größer ist.
\(d = 7,00 \text{ mm} \)
Querschnittsfläche einer Schweißlinse
\(A_w = \frac{\pi}{4} \cdot d^2 = 38,48 \text{ mm}^2 \)

Scheriode
\(\tau_{wa} = \text{WENN}(\tau_{wa,zul} = 0;0;F \cdot 10^9/(m \cdot n \cdot A_w)) = 43,31 \text{ N/mm}^2 \)
Leibung
\(\sigma_{wl} = \text{WENN}(\sigma_{wl,zul} = 0;0;F \cdot 10^9/(n \cdot d \cdot s)) = 95,24 \text{ N/mm}^2 \)
Schubiode
\(\tau_{ws} = \text{WENN}(\tau_{ws,zul} = 0;0;F \cdot 10^9/(n \cdot d \cdot s \cdot \pi)) = 30,32 \text{ N/mm}^2 \)
Abscherkraft der Schweißverbindung
\(F_{WB} = \text{WENN}(\tau_{WB} = 0;0;n \cdot m \cdot A_w \cdot \tau_{WB}) = 18816,72 \text{ N} \)
Zugbruchkraft des Bauteils
\(F_B = \text{WENN}(R_m = 0;0;S \cdot R_m) = 22500,00 \text{ N} \)

Nachweise

Scheriode nachweis:
\(\frac{\tau_{wa}}{\tau_{wa,zul}} = \frac{0,72}{<1} \)
Leibungsnachweis:
\(\frac{\sigma_{wl}}{\sigma_{wl,zul}} = \frac{0,58}{<1} \)
Schubiodenachweis:
\(\frac{\tau_{ws}}{\tau_{ws,zul}} = \frac{0,40}{<1} \)
Querstiftverbindung

![Diagram of a cross pin connection]

Querstift unter Drehmoment T

System:
- Bauteilwerkstoff: BT = GEW("Verbindungen/StBo";BT;) = E295
- Lastfall LF = GEW("Verbindungen/StBo";LF;) = wechselnd
- Sitzart A = GEW("Verbindungen/StBo";S;) = Preßsitz glatter Stifte

Belastung:
- Drehmoment T = 300,00 Nm

Abmessungen:
- Stiftdurchmesser d = 16,0 mm
- Nabenußendurchmesser D_a = 72,0 mm
- Nabenninnendurchmesser D_i = 55,0 mm

Berechnung:
- Stiftquerschnitt S = \(\frac{\pi \cdot d^2}{4} \) = 201,06 mm²
- Pressung der Lochwand im Außenbauteil:
 \[p_a = \frac{4 \cdot T \cdot 10^3}{(D_a^2 - D_i^2) \cdot d} \] = 34,74 N/mm²
- Pressung der Lochwand im Innenbauteil:
 \[p_i = \frac{6 \cdot T \cdot 10^3}{D_i^2 \cdot d} \] = 37,19 N/mm²
- Scherspannung im Stiftquerschnitt:
 \[\tau_a = \frac{T \cdot 10^3}{D_i \cdot S} \] = 27,13 N/mm²
zulässige Spannungen:
\[p_{zul} = \text{TAB("Verbindungen/StBo"; p; LF=LF; BT=BT; S=A)} = 38.00 \text{ N/mm}^2 \]
\[\tau_{azul} = \text{TAB("Verbindungen/StBo"; \tau_a; LF=LF; BT=BT; S=A)} = 30.00 \text{ N/mm}^2 \]

Nachweise:
\[\frac{p_a}{p_{zul}} = 0.91 \leq 1 \]
\[\frac{p_i}{p_{zul}} = 0.98 \leq 1 \]
\[\frac{\tau_a}{\tau_{azul}} = 0.90 \leq 1 \]
Druckzylinder mit Schrauben:

System:
- Außendurchmesser $D_a = 540,0 \text{ mm}$
- Innendurchmesser $D_i = 510,0 \text{ mm}$
- Durchmesser $D_m = 530,0 \text{ mm}$
- Überdruck $p_e = 8,0 \text{ bar}$
- Sicherheitszahl $\nu = 1,8$
- Streckgrenze $R_e = 640,0 \text{ N/mm}^2$
- Spannungsquerschnitt $A_s = 58,9 \text{ mm}^2$

Berechnung:
Auf die Verbindung wirkende Kraft:

$$F = \frac{\pi \cdot D_m^2 \cdot 10^{-2} \cdot p_e \cdot 10}{4} = 176494,5 \text{ N}$$

zulässige Druckspannung:

$$\sigma_{zul} = \frac{R_e}{\nu} = 355,6 \text{ N}$$

erforderliche Querschnittsfläche:

$$S = \frac{F}{\sigma_{zul}} = 496,3 \text{ mm}^2$$

Erforderliche Schraubenzahl:

$$n = \frac{S}{A_s} = 8,4$$

gewählt Schraubenanzahl $n = 10$
Schrumpfverband (Keilriemenscheibe)

Abmessungen

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wellendurchmesser d</td>
<td>75,0 mm</td>
</tr>
<tr>
<td>Drehmoment T_{Nenn}</td>
<td>750,0 Nm</td>
</tr>
<tr>
<td>Betriebsfaktor K_A</td>
<td>1,5</td>
</tr>
<tr>
<td>Haftsicherheit S_H</td>
<td>1,5</td>
</tr>
<tr>
<td>Sicherheit pl. Verf. S_{PA}</td>
<td>1,0</td>
</tr>
<tr>
<td>Haftbeiwert µ</td>
<td>0,16</td>
</tr>
<tr>
<td>Rautiefe R_{2la}</td>
<td>6,3 \times 10^{-3} = 0,0063 mm</td>
</tr>
<tr>
<td>Rautiefe R_{2ai}</td>
<td>6,3 \times 10^{-3} = 0,0063 mm</td>
</tr>
<tr>
<td>Elastizitätsmodul Nabe E_A</td>
<td>115000 N/mm²</td>
</tr>
<tr>
<td>Querdehnzahl Welle ν_f</td>
<td>0,30</td>
</tr>
<tr>
<td>Querdehnzahl Nabe ν_A</td>
<td>0,25</td>
</tr>
<tr>
<td>Elastizitätsmodul Welle E_f</td>
<td>210000 N/mm²</td>
</tr>
<tr>
<td>zul. Spannung R_{m}</td>
<td>250 N/mm²</td>
</tr>
</tbody>
</table>

Drehmoment T_{eq} = K_A \times T_{Nenn} = 1125,0 Nm
Fugendurchmesser D_F = d = 75,0 mm

Umfangskraft F_t = \frac{T_{eq} \times 10^{-3}}{d / 2} = 30000,0 N

Nabenlänge L = 1,4 \times d = 105,0 mm
Graugußnabe mit D_{Ab} = 2,4 \times d = 180 mm

gewählt Nabenlänge L = 115,0 mm
gewählt Fugenlänge l_F = 120,0 mm
gewählt D_{Ab} = 180,0 mm
Berechnung

Rutschkraft \(F_{Rt} \) = \(S_H \cdot F_t \) = 45000,0 N

Fugenfläche \(A_F \) = \(D_F \cdot \pi \cdot I_F \) = 28274,3 mm²

erf. Fugenpressung \(p_{Ff} \) = \(\frac{A_F \cdot \mu}{F_{Rt}} \) = 9,9 N/mm²

\(Q_A = \frac{E_A \cdot 1 - \nu_I}{E_I} \cdot (1 + Q_A^2) + \nu_A \) = 0,42

\(K = \frac{R_m \cdot (1 - Q_A^2)}{3 \cdot S_{FA}} \) = 2,06

Kleinstes Haftmaß \(Z_k \) = \(K \cdot p_{Ff} \cdot D_F / E_A \) = 0,013 mm

Glättung \(G \) = 0,8 \(\cdot (R_{zAl} + R_{zla}) \) = 0,010 mm

Mindestübermaß \(\bar{U}_u \) = \(Z_k + G \) = 0,023 mm

mit Sicherheit \(S_{FA} \):

\[\text{zul. Fugenpressung } p_{Fg} = \frac{R_m \cdot (1 - Q_A^2)}{3 \cdot S_{FA}} \] = 59,4 N/mm²

zul. Haftmaß \(Z_g \) = \(p_{Fg} \cdot D_F / E_A \) = 0,080 mm

Höchstübermaß \(\bar{U}_o \) = \(Z_g + G \) = 0,090 mm

Passtoleranz \(P_T \) = \(\bar{U}_o - \bar{U}_u \) = 0,067 mm

Bohrung \(T_B \) = 0,6 \(\cdot P_T \) = 0,040 mm

Wellentoleranz

nach DIN ISO 286-1

gewählt Grundtoleranz \(IT = 30 \cdot 10^{-3} \) = 0,030 mm

Oberes Grundabmaß \(ES = 30 \cdot 10^{-3} \) = 0,030 mm

\(EI = ES - IT \) = 0,000 mm

unteres Abmaß \(ei = ES + \bar{U}_u \) = 0,053 mm

oberes Abmaß \(es = EI + \bar{U}_o \) = 0,090 mm

aus Tabelle \(ei' = 59 \cdot 10^{-3} \) = 0,059 mm

Wellentoleranz \(T_w = es - ei' \) = 0,031 mm

gewählt:

Bohrung in Toleranzklasse: \(\text{H7} \)

Welle: \(\text{s7} \)

Berechnung der Temperaturdifferenz

Raumtemperatur \(\vartheta = 20,0 ^\circ C \)

Fürgetemperatur (Innen) \(\vartheta_I = 20,0 ^\circ C \)

Ausz. koeffizient \(\alpha_A = 10 \cdot 10^{-6} \) = 0,000010

Ausz. koeffizient \(\alpha_I = 11 \cdot 10^{-6} \) = 0,000011

\(\bar{U}_o' = (ei' + T_w) - EI \) = 0,090 mm

Einführspiel \(S_u = \bar{U}_o' / 2 \) = 0,045 mm

\[\Delta \vartheta = \frac{\bar{U}_o' + S_u - (\vartheta_I - \vartheta)}{\alpha_A \cdot D_F} \cdot \alpha_I \] = 180,0 °C

Fügetemperatur \(\vartheta_A = \vartheta + \Delta \vartheta \) = 200,0 °C

Um die Passteile zusammenzufügen, muss das Außenbauteil auf die erforferliche Fügetemp. erwärmt werden.

Pdf-Übersicht: Rechenfähige Vorlagen für VCMaster
Schweißen einer V-Naht

Vorwerte:
- Nahtlänge \(L = 780,0 \text{ mm} \)
- Blechdicke \(s = 10,0 \text{ mm} \)
- Nahtspaltbreite \(b = 2,0 \text{ mm} \)
- Öffnungswinkel \(\alpha = 60,0^\circ \)
- Elektrodenlänge \(l = 450,0 \text{ mm} \)
- Elektrodendurchmesser \(d = 4,0 \text{ mm} \)

Berechnung:
- Fläche \(A = s^2 \cdot \tan \left(\frac{\alpha}{2} \right) + b \cdot s \) = 77,74 \text{ mm}^2
- Volumen \(V_s = A \cdot L \) = 60637,2 \text{ mm}^3
- Nutzbare Elektrodenlänge:
 \(l_E = l - 30 \) = 420,0 mm
- Nutzbares Volumen einer Elektrode:
 \(V_E = \frac{\pi \cdot d^2}{4} \cdot l_E \) = 5277,9 \text{ mm}^3
- Anzahl der benötigten Elektroden:
 \(i = \frac{V_s}{V_E + 0.49} \) = 12 Stück
Schweißöse

System:
- Blechdicke $s = 10,0 \text{ mm}$
- Länge $L = 40,0 \text{ mm}$
- Höhe $h = 80,0 \text{ mm}$
- Achsenhöhe $e = 40,0 \text{ mm}$
- Schweißnahtdicke $a_k = 5,0 \text{ mm}$
- Dicke Stumpfnaht $a_s = s = 10,0 \text{ mm}$
- Lastfall $LF = \text{GEW("Verbindungen/SchwN";LF;)} = \text{schwellend}$
- Nahtart $NA = \text{GEW("Verbindungen/SchwN";NA;)} = \text{SmG}$
- Stahlsorte $S = \text{GEW("Verbindungen/SchwN";Bez;)} = \text{S355}$
- Bewertungsgruppe $BW = \text{GEW("Verbindungen/SchwN";BW;)} = C$

Belastung:
- Kraft $F = 28000,0 \text{ kN}$
- Winkel $\alpha = 45,0 \^\circ$

Berechnung:
- Schweifnähtfläche $A_w = 2 \times a_k \times h = 800,0 \text{ mm}^2$
- Waagrechte Kraftkomponente $F_x = F \times \cos(\alpha) = 19799,0 \text{ kN}$
- Senkrechte Kraftkomponente $F_y = F \times \sin(\alpha) = 19799,0 \text{ kN}$

Spannungen aus Zug und Moment:
- $\sigma_{wz} = \frac{F_x}{A_w} = 24,7 \text{ N/mm}^2$
- $\sigma_{wbz} = \frac{M_{wb} \times e}{I_w} = 74,2 \text{ N/mm}^2$
\[\sigma_{wr} = \sigma_{wz} + \sigma_{wbz} = 98.9 \text{ N/mm}^2 \]
\[\frac{\sigma_{wr}}{\text{zul. } \sigma_{wp}} = 0.94 < 1 \]

Spannungen aus Schub:
\[\tau = \frac{F_y}{A_w} = 24.7 \text{ N/mm}^2 \]
\[\frac{\tau}{\text{zul. } \tau_{ws}} = 0.38 < 1 \]
Steckstiftverbindung unter Biegekraft

System:
- Stiftdurchmesser \(d \) = 16,00 mm
- Länge der Lochwand \(s \) = 46,00 mm
- Abstand F-Lochwandmitte \(L \) = 42,00 mm
- Abstand \(l \) = 19,00 mm
- Werkstoff WK = GEW("Verbindungen/StBo":BT;) = S235
- Sitzart SA = GEW("Verbindungen/StBo":S;) = Gleitsitz

Belastung:
- Kraft \(F \) = 2250,00 N
- Lastfall LF = GEW("Verbindungen/StBo":LF;) = ruhend

Berechnung:
- Stiftquerschnitt \(S \) = \[\frac{\pi \cdot d^2}{4} \] = 201,06 mm²
- Widerstandmoment \(W \) = \[\frac{\pi \cdot d^3}{32} \] = 402,12 mm²
- Pressung der Lochwand:
 \[p = \frac{F}{d \cdot s} \left(1 + \frac{L}{s} \right) \] = 19,80 N/mm²
- Biegespannung im Stift:
 \[\sigma_b = \frac{F \cdot l}{W} \] = 106,31 N/mm²
- Scherspannung im Stift:
 \[\tau_a = \frac{F}{S} \] = 11,19 N/mm²
Zulässige Spannungen:
\[p_{zul} = \text{TAB}(\text{"Verbindungen/StBo"}; p; LF=LF; BT=WK; S=SA) = 30,00 \text{ N/mm}^2 \]
\[\sigma_{bzul} = \text{TAB}(\text{"Verbindungen/StBo"}; \sigma_b; LF=LF; BT=WK; S=SA) = 200,00 \text{ N/mm}^2 \]
\[\tau_{azul} = \text{TAB}(\text{"Verbindungen/StBo"}; \tau_a; LF=LF; BT=WK; S=SA) = 80,00 \text{ N/mm}^2 \]

Nachweise:
Lochwandpressung:
\[p / p_{zul} = 0.66 < 1 \]

Biegespannung:
\[\sigma_b / \sigma_{bzul} = 0.53 < 1 \]

Scherspannung:
\[\tau_a / \tau_{azul} = 0.14 < 1 \]
Drehmaschine

Vorwerte:
- Durchmesser $D = 75,0$ mm
- Drehzahl $n = 265,0$ 1/min
- Schnitttiefe $a = 6,0$ mm
- Vorschub $f = 0,6$ mm
- Spezifische Schnittkraft $k_c = 2620,0$ N/mm²
- Wirkungsgrad $\eta = 0,65 \%$

Berechnung:
- Geschwindigkeit $v_c = \pi \times D \times n \times 10^{-3} = 62,44$ m/min
- Fläche $A = a \times f = 3,60$ mm²
- Schnittkraft $F_c = A \times k_c = 9432,0$ N
- Leistung an der Werkzeugmaschine:
 \[P_c = \frac{F_c \times v_c}{60 \times 10^3} = 9,82 \text{ kW} \]
- Leistungsaufnahme des Antriebsmotors:
 \[P_1 = \frac{P_c}{\eta} = 15,11 \text{ kW} \]
Passfedernut mit n-Schnitten gleicher Schnitttiefe:

Vorwerte:
- Anzahl der Schnitte $n = 3$
- Anzahl der Schneiden $z = 2$
- Vorschub je Schneide $f_z = 0,40 \text{ mm}$
- spezifische Schnittkraft $k_c = 2340 \text{ N/mm}^2$
- gesamt Schnitttiefe $a = 5 \text{ mm}$
- Fräsdurchmesser $D = 10 \text{ mm}$
- Arbeitseingriff $a_e = 10 \text{ mm}$

Berechnung:

- Schnitttiefe $a_p = \frac{a}{n} = 1,67 \text{ mm}$
- Spannungsdicke $h = 0,9 \times f_z = 0,36 \text{ mm}$
- Winkel zwischen Fräserein- und Fräserausritt: $\varphi_s = 2 \times \text{asin} \left(\frac{a_e}{D} \right) = 180,00 ^\circ$
- Anzahl der Schneiden im Eingriff: $z_e = \frac{\varphi_s \times z}{360} = 1,0$
- Spannungsquerschnitt: $A = a_p \times h \times z_e = 0,60 \text{ mm}^2$
- Schnittkraft: $F_c = A \times k_c = 1404,00 \text{ N}$
Blechträger verstärkt

Eingabedaten:
Querschnitt / Geometrie:

\[b_1 = 33,0 \text{ cm} \]
\[t_1 = 2,0 \text{ cm} \]
\[b_2 = 30,0 \text{ cm} \]
\[t_2 = 1,8 \text{ cm} \]
\[h = 140,0 \text{ cm} \]
\[s = 1,0 \text{ cm} \]

Schweißnähte
\[a_1 = 0,4 \text{ cm} \]
\[a_2 = 0,4 \text{ cm} \]

Schnittgrößen:
\[\text{Moment } M_d = 4107,00 \text{ kNm} \]
\[\text{Normalkraft } N_d = 0,00 \text{ kN} \]
\[\text{Querkraft } Q_d = 740,00 \text{ kN} \]
Berechnungsergebnisse:

Materialkennwerte:

Stahl = GEW("Material/DIN";Bez;) = S235

\[f_{y,k} = TAB("Material/DIN"; f_{y,k}; Bez=Stahl)/10 \]

\[f_{y,k} = 24,00 \text{kN/cm}^2 \]

\[\gamma_M = 1,10 \]

\[f_{y,d} = f_{y,k} / \gamma_M \]

\[f_{y,d} = 21,82 \text{kN/cm}^2 \]

\[\sigma_{Rd} = f_{y,k} / \gamma_M \]

\[\sigma_{Rd} = 21,82 \text{kN/cm}^2 \]

\[\tau_{Rd} = \sqrt{3} \cdot f_{y,k} / \gamma_M \]

\[\tau_{Rd} = 12,60 \text{kN/cm}^2 \]

Beiwert \(\alpha_w = \) WENN(Stahl = "S235" ; 0,95; 0,80) = 0,95

\[t_{W,R,d} = \alpha_w \cdot f_{y,d} \]

\[t_{W,R,d} = 20,73 \text{kN/cm}^2 \]

Querschnittswerte:

\[A = h \cdot s + 2 \cdot (b_1 \cdot t_1 + b_2 \cdot t_2) = 380,00 \text{cm}^2 \]

\[I_{y1} = s \cdot h^3 / 12 + 2 \cdot \left(b_1 \cdot t_1^3 / 12 + b_2 \cdot t_1 \cdot (h + t_1)^2 / 4 \right) \]

\[I_{y1} = 894122,67 \text{cm}^4 \]

\[I_{y2} = 2 \cdot \left(b_2 \cdot t_2^3 / 12 + b_2 \cdot t_2 \cdot (h + 2 \cdot t_1 + t_2)^2 / 4 \right) \]

\[I_{y2} = 573985,44 \text{cm}^4 \]

\[I_y = I_{y1} + I_{y2} = 1468108,1 \text{cm}^4 \]

\[W_1 = I_y / h \]

\[W_1 = 20972,97 \text{cm}^3 \]

\[W_2 = I_y / h \]

\[W_2 = 20972,97 \text{cm}^3 \]

\[W_3 = I_y / (h / 2 + t_1 + t_2) \]

\[W_3 = 19893,06 \text{cm}^3 \]

\[W_4 = I_y / (h / 2 + t_1 + t_2) \]

\[W_4 = 19893,06 \text{cm}^3 \]

\[S_1 = b_1 \cdot t_1 \cdot (h + t_1) / 2 + b_2 \cdot t_2 \cdot (h / 2 + t_1 + t_2) \]

\[S_1 = 8622,60 \text{cm}^3 \]

\[S_5 = b_2 \cdot t_2 \cdot (h / 2 + t_1 + t_2) \]

\[S_5 = 3936,60 \text{cm}^3 \]

\[S_y = s \cdot h^5 / 8 + b_1 \cdot t_1 \cdot (h + t_1) / 2 + b_2 \cdot t_2 \cdot (h / 2 + t_1 + t_2) \]

\[S_y = 11072,60 \text{cm}^3 \]
Spannungsnachweise:

Normalspannungen
\[\sigma_1 = \frac{N_d}{A} \cdot \frac{M_d \cdot 100}{W_1} = -19,58 \text{kN/cm}^2 \]
\[\sigma_2 = \frac{N_d}{A} \cdot \frac{M_d \cdot 100}{W_2} = 19,58 \text{kN/cm}^2 \]
\[\sigma_3 = \frac{N_d}{A} \cdot \frac{M_d \cdot 100}{W_3} = -20,65 \text{kN/cm}^2 \]
\[\sigma_4 = \frac{N_d}{A} \cdot \frac{M_d \cdot 100}{W_4} = 20,65 \text{kN/cm}^2 \]
\[\max \sigma = \text{MAX(ABS}(\sigma_1); \text{ABS}(\sigma_2); \text{ABS}(\sigma_3); \text{ABS}(\sigma_4)) = 20,65 \text{kN/cm}^2 \]
\[\max \sigma / \sigma_{\text{Rd}} = 0.946 \leq 1 \]

Schubspannungen \(\tau_1 = \tau_2 \)
\[\tau_1 = \text{ABS}(Q_d) \cdot \frac{S_1}{I_y \cdot s} = 4,35 \text{kN/cm}^2 \]
\[\max \tau = \text{ABS}(Q_d)S_y / (I_y \cdot s) = 5,58 \text{kN/cm}^2 \]
\[\max \tau / \tau_{\text{Rd}} = 0.443 \leq 1 \]

Vergleichsspannungen
\[\sigma_{\text{v1}} = \sqrt{\sigma_1^2 + 3 \cdot \tau_1^2} = 20,98 \text{kN/cm}^2 \]
\[\sigma_{\text{v2}} = \sqrt{\sigma_2^2 + 3 \cdot \tau_1^2} = 20,98 \text{kN/cm}^2 \]
\[\max \sigma_{\text{v}} = \text{MAX}(\sigma_{\text{v1}} ; \sigma_{\text{v2}}) = 20,98 \text{kN/cm}^2 \]
\[\max \sigma_{\text{v}} / \sigma_{\text{Rd}} = 0.962 \leq 1 \]

Nachweis der Schweißnähte:
\[\tau_{w1} = \text{ABS}(Q_d) \cdot \frac{S_1}{I_y \cdot 2 \cdot a_1} = 5,43 \text{kN/cm}^2 \]
\[\tau_{w1} / \tau_{W,R,d} = 0.262 \leq 1 \]
\[\tau_{w2} = \text{ABS}(Q_d) \cdot \frac{S_5}{I_y \cdot 2 \cdot a_2} = 2,48 \text{kN/cm}^2 \]
\[\tau_{w2} / \tau_{W,R,d} = 0.120 \leq 1 \]
Bündige Fußplatte mit Schubdollen

Eingabedaten:
Material / Querschnitte / Geometrie:

<table>
<thead>
<tr>
<th>Material</th>
<th>Querschnitt</th>
<th>Geometrie</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stahl</td>
<td>GEW("Material/DIN";Bez;)</td>
<td>S235</td>
</tr>
<tr>
<td>Beton</td>
<td>GEW("Material/DIN1045;Bez;)</td>
<td>C20/25</td>
</tr>
</tbody>
</table>

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Schubdollen:
Profil Typ 1 = GEW(“Profil/Profile”; Bez;) = HEB
Nennhöhe NH1 = GEW(“Profil/Typ1”; NH1) = 140
Schubdollenlänge h_D = 15,00 cm
Fußplatte:
Höhe h_p = 42,00 cm
Breite b_p = 32,00 cm
Dicke d_p = 3,00 cm
Mörtelfuge f = 4,00 cm
Ankerlochdurchmesser d_L = 3,00 cm

Schweißnähte:
Schubdollen-Fußplatte a = 0,50 cm

Einwirkungen:
Bemessungswerte der Auflagerkräfte (Index "d")
Vertikal V_d = 285,00 kN
Horizontal H_d = 65,00 kN

Berechnungsergebnisse:
Materialkennwerte:
Stahl:
\[f_{y,k} = \frac{\text{TAB}("Material/DIN"; f_{yk}; Bez=Stahl)}{10} = 24,00 \text{ kN/cm}^2 \]
\[\gamma_M = 1,10 \]
\[f_{y,d} = f_{y,k} / \gamma_M = 21,82 \text{ kN/cm}^2 \]
\[\sigma_{Rd} = f_{y,k} / \gamma_M = 21,82 \text{ kN/cm}^2 \]
\[\tau_{Rd} = \frac{f_{y,k}}{\sqrt{3} \times \gamma_M} = 12,60 \text{ kN/cm}^2 \]
Beiwert
\[\alpha_w = \text{WENN}(\text{Stahl }="\text{S235}"; 0,95; 0,80) = 0,95 \]
\[\tau_{w,R,d} = \alpha_w \times f_{y,d} = 20,73 \text{ kN/cm}^2 \]
\[\sigma_{w,R,d} = \alpha_w \times f_{y,d} = 20,73 \text{ kN/cm}^2 \]
Beton:
\[\beta_{Rd} = 0,85 \times \text{TAB}("Material/DIN1045"; f_{ck}; Bez=Beton)/15 = 1,13 \text{ kN/cm}^2 \]

Querschnittswerte:
Schubdollen:
\[h = \text{TAB("Profil/Typ1"; h; NH=NH1)/10} = 14,00 \text{ cm} \]
\[b_D = \text{TAB("Profil/Typ1"; b; NH=NH1)/10} = 14,00 \text{ cm} \]
\[t = \text{TAB("Profil/Typ1"; t; NH=NH1)/10} = 1,20 \text{ cm} \]
\[s = \text{TAB("Profil/Typ1"; s; NH=NH1)/10} = 0,70 \text{ cm} \]
\[r = \text{TAB("Profil/Typ1"; r; NH=NH1)/10} = 1,20 \text{ cm} \]
\[I_y = \text{TAB("Profil/Typ1"; I_y; NH=NH1)} = 1510,00 \text{ cm}^4 \]
Nachweis der Fußplatte:
Betonpressung:

\[A_N = h_p \cdot b_p \cdot 2 \cdot \frac{\pi \cdot d_L^2}{4} = 1329,86 \text{ cm}^2 \]

\[\sigma_b = \frac{V_d}{A_N} = 0,214 \text{ kN/cm}^2 \]

\[\frac{\sigma_b}{\beta_{Rd}} = 0,189 \leq 1 \]

Die erforderliche Fußplattendicke wird vereinfacht mittels des Balkenmodells ermittelt!

\[\alpha = \frac{h_p}{b_p} = 1,313 \]

\[m = \text{WENN}(\alpha > 1,25; 0,866; 0,707 \cdot \alpha) = 0,866 \]

\[\text{erf.}d_p = m \cdot b_p \cdot \sqrt{\frac{\sigma_b}{\sigma_{Rd}}} = 2,74 \text{ cm} \]

\[\frac{\text{erf.}d_p}{d_p} = 0,913 \leq 1 \]

Nachweis des Schubdolleins:
Die Horizontalkraft wird zu 60% auf den vorderen und zu 40% auf den hinteren Flansch verteilt!
Betonpressung:

\[\sigma_b = 0,6 \cdot \frac{H_d}{b_D \cdot (h_D - f)} = 0,253 \text{ kN/cm}^2 \]

\[\frac{\sigma_b}{\beta_{Rd}} = 0,224 \leq 1 \]

Flanschbiegung:

\[M_F = \frac{\sigma_b \cdot (b_D \cdot (s + 2 \cdot r))^2}{8} = 3,757 \text{ kNcm/cm} \]

\[W_F = \frac{t^2}{6} = 0,240 \text{ cm}^3/\text{cm} \]

\[\sigma_F = \frac{M_F}{W_F} = 15,65 \text{ kN/cm}^2 \]

\[\frac{\sigma_F}{\sigma_{Rd}} = 0,717 \leq 1 \]
Vergleichsspannungsnachweis im Punkt A:
(am Rundungsbeginn im Steg)

\[M_A = \frac{H_d \cdot (h_D - f)}{2} = 357,50 \text{ kNcm} \]
\[W_A = \frac{l_y}{(h / 2 - t - r)} = 328,26 \text{ cm}^3 \]
\[\sigma_x = \frac{M_A}{W_A} = 1,09 \text{ kN/cm}^2 \]
\[\sigma_z = \frac{-0,6 \cdot H_d}{(h_D - f) \cdot s} = -5,06 \text{ kN/cm}^2 \]
\[A_{St} = s \cdot (h - t) = 8,96 \text{ cm}^2 \]
\[\tau_m = \frac{H_d}{A_{St}} = 7,25 \text{ kN/cm}^2 \]
\[\sigma_v = \sqrt{\sigma_x^2 + \sigma_z^2 - \sigma_x \cdot \sigma_z + 3 \cdot \tau_m^2} = 13,78 \text{ kN/cm}^2 \]
\[\sigma_v / \sigma_{Rd} = 0,632 \leq 1 \]

Nachweis der Anschlußnähte:
\[A_{W,St} = 2 \cdot a \cdot (h - 2 \cdot (t + r)) = 9,20 \text{ cm}^2 \]
\[A_{W,Fl} = a \cdot (2 \cdot b_D - (s + 2 \cdot r)) = 12,45 \text{ cm}^2 \]
\[F_{Fl} = H_d \cdot \left(\frac{h_D + f}{2 \cdot (h - t)}\right) = 48,24 \text{ kN} \]
\[\tau_w = \frac{H_d}{A_{W,St}} = 7,07 \text{ kN/cm}^2 \]
\[\tau_w / \tau_{w,R,d} = 0,341 \leq 1 \]
\[\sigma_w = \frac{F_{Fl}}{A_{W,Fl}} = 3,87 \text{ kN/cm}^2 \]
\[\sigma_w / \sigma_{w,R,d} = 0,187 \leq 1 \]

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Trägerbemessung nach DIN 18800

Systemwerte:
- Länge \(l = 3,50 \text{ m} \)
- Sicherheitsbeiwert \(\gamma_M = 1,10 \)
- Träger Typ = GEW("Profil/Profile"; Bez;) = IPB
- Nennhöhe \(NH = 400 \)
- Stahl = GEW("Material/DIN"; Bez;) = S275
- \(h = 400,0 \text{ mm} \)
- \(t = 24,0 \text{ mm} \)
- \(s = 13,5 \text{ mm} \)
- \(W = 721,0 \text{ cm}^3 \)
- \(R_e = 275,00 \text{ N/mm}^2 \)

Belastung:
- \(G_k = 2,50 \text{ kN/m} \)
- \(Q_k = 2,25 \text{ kN/m} \)
- \(F = 105,00 \text{ kN} \)
- \(q_D = 1,35 * G_k + 1,5 * Q_k = 6,75 \text{ kN/m} \)
- \(F_D = 1,5 * F = 157,50 \text{ kN} \)

Schnittgrößen:
- \(Q = q_D * l / 2 + F_D / 2 = 90,56 \text{ kN} \)
- \(M = q_D * l^2 / 8 + F_D * l / 4 = 148,15 \text{ kNm} \)

Normalspannungsnachweis:
- \(\sigma_{R,d} = R_e / \gamma_M = 250,00 \text{ kN/cm}^2 \)
- \(\sigma = 10 * M / W = 2,05 \text{ kN/cm}^2 \)
- \(\sigma / \sigma_{R,d} = 0,008 < 1 \)

Schubspannungsnachweis:
- \(A_{Steg} = (h - t) * s / 100 = 50,76 \text{ cm}^2 \)
- \(\tau_{R,d} = \frac{R_e}{\gamma_M * 10 * \sqrt{3}} = 14,43 \text{ kN/cm}^2 \)
- \(\tau = Q / A_{Steg} = 1,78 \text{ kN/cm}^2 \)
- \(\tau / \tau_{R,d} = 0,123 < 1 \)
Flachstahl mit einschnittigem Anschluß

Einwirkungen:
\[N_g = 48,00 \text{ kN} \]
\[N_p = 26,80 \text{ kN} \]
\[Z_d = 1,35 \times N_g + 1,50 \times N_p = 105,00 \text{ kN} \]

Materialkennwerte:
- Stahl = GEW("Material/DIN"; Bez;) = S275
- Schraube = GEW("Verbindungen/Schr"; SG;) = M 20
- FK = GEW("Verbindungen/Schr"; FK;) = 4.6
- \(R_{mN} = \frac{\text{TAB}("Material/DIN"; f_{uk} ; Bez=Stahl)}{10} = 41,00 \text{ kN/cm}^2 \)
- \(f_{u,b,k} = \frac{\text{TAB}("Verbindungen/Schr"; f_{ubk} ; FK=FK)}{10} = 40,00 \text{ kN/cm}^2 \)
- Beiwert \(\gamma_M = 1.10 \)

Schrauben 2xM20, 4.6:
- \(d_{Sch} = \frac{\text{TAB}("Verbindungen/Schr"; d; SG=Schraube)}{10} = 20,00 \text{ mm} \)
- Lochspiel \(\Delta d = 2,00 \text{ mm} \)
- Lochdurchmesser \(d_L = d_{Sch} + \Delta d = 22,00 \text{ mm} \)

Zugstab Fl 80x8:
- Flachstahlbreite \(b = 80,00 \text{ mm} \)
- Flachstahldicke \(t = 8,00 \text{ mm} \)
- \(R_e = \frac{\text{TAB}("Material/DIN"; f_{yk}; t ; Bez=Stahl)}{10} = 27,50 \text{ kN/cm}^2 \)
- Bruttoquerschnitt \(A_{Br} = b \times t / 100 = 6,40 \text{ cm}^2 \)
- Nettoquerschnitt \(A_{Net} = t^* (b-d_L) / 100 = 4,64 \text{ cm}^2 \)

\[Z_{R,d} = \frac{A_{Net} \times R_{mN}}{1,25 \times \gamma_M} = 138,4 \text{ kN} \]
\[\nu = \frac{Z_d}{Z_{R,d}} = 0,759 < 1 \]
Schraubenabstände:
Untereinander:
\[
\begin{align*}
\text{min}.e &= 2,2 \cdot d_L = 48,4 \text{ mm} \\
\text{max}.e &= \text{MIN}(6,0 \cdot d_L ; 12 \cdot t) = 96,0 \text{ mm}
\end{align*}
\]

zum Rand:
\[
\begin{align*}
\text{min}.e_1 &= 1,2 \cdot d_L = 26,4 \text{ mm} \\
\text{max}.e_1 &= \text{MIN}(3,0 \cdot d_L ; 6 \cdot t) = 48,0 \text{ mm}
\end{align*}
\]

quer zum Rand:
\[
\begin{align*}
\text{gewählt } e &= 70,0 \text{ mm} \\
\text{gewählt } e_1 &= 45,0 \text{ mm} \\
\text{vorh. } e_2 &= b/2 = 40,0 \text{ mm}
\end{align*}
\]

Nachweis gegen Abscheren:
\[
\begin{align*}
V_{a,R,d} &= \text{TAB("Verbindungen/Schr"); } V_{aRd}; \text{ SG=Schraube; FK=FK} = 68,5 \text{ kN} \\
V_a &= Z_d / 2 = 52,5 \text{ kN} \\
v &= V_a / V_{a,R,d} = 0,766 \leq 1
\end{align*}
\]

Lochleibung:
\[
\begin{align*}
e_2 / d_L &= 1,8 \\
\alpha_1 &= \alpha_1 = 1,950
\end{align*}
\]

\[
\begin{align*}
V_{l,R,d} &= \frac{t \cdot d_{\text{Sch}}}{100} \cdot \alpha_1 \cdot \frac{R_e}{\gamma_M} = 78,000 \text{ kN} \\
V_l &= Z_d / 2 = 52,5 \text{ kN} \\
v &= V_l / V_{l,R,d} = 0,673 \leq 1
\end{align*}
\]

gewählt: 2xM20 (4.6)
Bl. 10
Fl. 80x8
Geschlossener Rahmen mit n Pendelstützen

Eingabedaten:
System:
- Rahmenhöhe $h = 6,00 \, \text{m}$
- Rahmenbreite $b = 8,00 \, \text{m}$
- Normalkraft $N_1 = 1500,00 \, \text{kN}$
- Normalkraft $N_2 = 1200,00 \, \text{kN}$
- $P = P_1 \frac{h}{h_1} + P_2 \frac{h}{h_2} + ...$
- Normalkraft $P = 2500,00 \, \text{kN}$

Stahlprofile:
- Träger Typ1 = GEW("Profil/Profile"; Bez;) = HEA
 Nennhöhe $NH_1 = 320$
- Träger Typ2 = GEW("Profil/Profile"; Bez;) = HEA
 Nennhöhe $NH_2 = 340$
- Träger Typ3 = GEW("Profil/Profile"; Bez;) = HEA
 Nennhöhe $NH_3 = 280$

Berechnungsergebnisse:
Querschnittswerte:
- $I_S = \text{TAB("Profil/Typ1; ly; NH=NH1")} = 22930,00 \, \text{cm}^4$
- $I_o = \text{TAB("Profil/Typ2; ly; NH=NH2")} = 27690,00 \, \text{cm}^4$
- $I_u = \text{TAB("Profil/Typ3; ly; NH=NH3")} = 13670,00 \, \text{cm}^4$
Vorwerte:

\[V = V_1 + V_2 = 2700,00 \text{ kN} \]

\[n = \frac{P}{V} = 0,9259 \]

\[n_1 = \frac{V_1}{V} = 1,8000 \]

\[n_2 = \frac{V_2}{V} = 2,2500 \]

\[v_a = \frac{6 \cdot l_u \cdot h}{I_s \cdot b} = 2,6827 \]

\[v_b = \frac{6 \cdot l_o \cdot h}{I_s \cdot b} = 5,4341 \]

\[\bar{v}_a = \frac{v_a}{2 + v_a} = 0,5729 \]

\[\bar{v}_b = \frac{v_b}{2 + v_b} = 0,7310 \]

\[\rho = 1 + \frac{0,218 \cdot \left(4 \cdot (\bar{v}_a \cdot \bar{v}_b)^2 + \bar{v}_a \cdot \bar{v}_b \right)}{(3 \cdot \bar{v}_a \cdot \bar{v}_b)^2} = 1,0393 \]

Knicklänge / Knicklast:

\[\eta_{ki} = \frac{4}{\left(\frac{1}{\bar{v}_a} + \frac{1}{\bar{v}_b} \right) \cdot (\rho + n)} = 4,6943 \]

\[\beta_1 = \pi \cdot \sqrt{\frac{n_1}{\eta_{ki}}} = 1,9454 \]

\[\beta_2 = \pi \cdot \sqrt{\frac{n_2}{\eta_{ki}}} = 2,1750 \]

\[s_{k1} = \beta_1 \cdot h = 11,67 \text{ m} \]

\[s_{k2} = \beta_2 \cdot h = 13,05 \text{ m} \]

\[N_{1ki} = \pi^2 \cdot 2,1 \cdot \frac{l_s}{2} \cdot s_{k1} = 3489,64 \text{ kN} \]

\[N_{2ki} = \pi^2 \cdot 2,1 \cdot \frac{l_s}{2} \cdot s_{k2} = 2790,62 \text{ kN} \]
Gitterträger

Systemwerte:
- Gesamthöhe \(l = 15,00 \text{ m} \)
- Breite \(b = 60,00 \text{ cm} \)
- \(l_z \) und \(l_y = 150,00 \text{ cm} \)
- Stiel = 140x13
- Diagonale = 50x5
- max. Erzeugnisdicke \(t_{\text{max}} = 40,00 \text{ mm} \)
- Stahl = GEW("Material/DIN"; Bez;) = S275
- \(R_e = \text{TAB(}"\text{Material/DIN}"; f_{\text{yk}}; t_{\text{max}}; \text{Bez=Stahl}) = 275 \text{ N/mm}^2 \)
- \(\alpha_w = \text{WENN}(R_e < 240; 0,95; 0,8) = 0,80 \)
- \(\gamma_M = 1,10 \)

Beanspruchung:
- \(G_K = 814,81 \text{ kN} \)
- \(Q_K = 400,00 \text{ kN} \)
- \(F_d = 1,35*G_K + 1,5*Q_K = 1700,0 \text{ kN} \)

Querschnittswerte:
- Stiel (4 L 140 x 13)
- \(A_G = \text{TAB("Profil/WG"; A; Bez=Stiel)} = 35,00 \text{ cm}^2 \)
- \(I_G = \text{TAB("Profil/WG"; I; Bez=Stiel)} = 638,00 \text{ cm}^4 \)
- \(i_i = \text{TAB("Profil/WG"; i; Bez=Stiel)} = 5,38 \text{ cm} \)
- \(y_s = \text{TAB("Profil/WG"; e; Bez=Stiel)} = 3,92 \text{ cm} \)
- \(h_z \) und \(h_y = b - 2*y_s = 52,16 \text{ cm} \)
Diagonale (L 50 x 5)

\[A_D = \text{TAB("Profil/WG"; A; Bez=Diagonale)} = 4,80 \text{ cm}^2 \]
\[l_D = \text{TAB("Profil/WG"; l; Bez=Diagonale)} = 11,00 \text{ cm}^4 \]
\[i_{1D} = \text{TAB("Profil/WG"; i; Bez=Diagonale)} = 1,90 \text{ cm} \]

\[I_D = \sqrt{\frac{I_y}{2} + h_y^2} = 91,35 \text{ cm}

Stabilitätsnachweise:

Vorkrümmung \(v_0 = 100 \times \frac{l}{500} = 3,00 \text{ cm} \)
Knicklänge \(s_{K,z} = 100 \times l = 1500,00 \text{ cm} \)
Schwerpunkt \(y_s = h_y / 2 = 26,08 \text{ cm} \)

\[I_{z,ges} = 4 \times (A_G \cdot y_s^2 + I_{z,G}) = 97775,3 \text{ cm}^4 \]
\[i_z = \sqrt{\frac{I_{z,ges}}{4 \times A_G}} = 26,4 \text{ cm} \]

\[\alpha = \text{ATAN}(h_y / (0,5 \times l_y)) = 34,82 ^\circ \]
\[m = 2 \]

\[l'_z = 4 \times A_G \cdot y_s^2 = 95223,3 \text{ cm}^4 \]
\[S'_{z,d} = m \times 21000 \times A_D / 1,1 \times \sin(\alpha)^2 \times \cos(\alpha) = 49055,4 \text{ kN} \]
\[N_{k,z,d} = \frac{1}{\pi^2 \times 21000 \times l'_z / 1,1 \times S'_{z,d}} = 6859,2 \text{ kN} \]

\[v_o = 100 \times l / 500 = 3,00 \text{ cm} \]

\[\text{max.} M_{z,d} = \frac{F_d \times v_o}{1 - (F_d / N_{k,z,d})} = 6780,49 \text{ kNcm} \]
\[\text{max.} V_{y,d} = \pi \times \text{max.} M_{z,d} / (l' \times 100) = 14,20 \text{ kN} \]
Nachweis des Gurtstabes:

\[W' = \frac{l^2}{y_s} \quad l^2 = 3651,20 \text{ cm}^3 \]

\[N_{G,d} = \frac{F_d}{4 + (\max.M_{z,d} / W'_{z})} \times A_G = \frac{490,00 \text{ kN}}{4 + (\max.M_{z,d} / W'_{z})} \times A_G \]

Faktor nach DIN 18800 T2 4.3.2.1 \(\Rightarrow 1.52 / 1.28 / 1.00 \)

\[s_{k,1} = \frac{1.52 \times I_y}{2} = 114.00 \text{ cm} \]

\[\lambda_a = \frac{\pi \sqrt{\frac{210000}{R_e}}}{\lambda_a} = 86.81 \]

\[\lambda_{k,1} = \frac{s_{k,1}}{l_1} = 21.19 < 70 \]

\[\lambda_{k,1}' = \frac{\lambda_{k,1}}{\lambda_a} = 0.244 \]

\[knl = \frac{c}{\alpha} \]

\[\kappa_1 = \frac{\alpha}{\kappa_1} = 0.49 \]

\[N_{pl,G,d} = A_G \times R_e / (10 \times \gamma_M) = 875.00 \text{ kN} \]

\[\frac{N_{G,d}}{\kappa_1 \times N_{pl,G,d}} = 0.57 \leq 1 \]

Nachweis der Füllstäbe:

\[\max.D = \max.V_{y,d} \times I_d / (2 \times h_y) \quad = 12.43 \text{ kN} \]

DIN 18800 T2, Abs. 5.1.2 beachten:

\[\lambda_{k,D} = \frac{I_d}{(\lambda_a \times l_{1D})} = 0.5538 < 3 \]

\[\lambda_{k,D}' = \text{MIN} \left(\frac{0.35+0.753 \lambda_{k,D}}{0.50+0.646 \lambda_{k,D}} \right) = 0.7670 \]

\[knl = \frac{c}{\lambda_a} \]

\[\alpha = \frac{\alpha}{\kappa_1} = 0.49 \]

\[\kappa_1 = \frac{\alpha}{\kappa_1} = 0.683 \]

\[N_{pl,D,d} = A_D \times R_e / (10 \times \gamma_M) = 120.00 \text{ kN} \]

\[\frac{\max.D}{\kappa_1 \times N_{pl,D,d}} = 0.15 \leq 1 \]

Nachweis als Zugstab:

\[d = \text{TAB("Profil/WG"; s; Bez=Diagonale)} = 5.00 \text{ mm} \]

\[\	ext{Lochdurchmesser} = 13.0 \text{ mm} \]

\[A_{Netto} = A_D - (d \times d_L) / 100 = 4.15 \text{ cm}^2 \]

\[A_D / A_{Netto} = 1.157 < 1.2 \text{(S235)} \ u. < 1.1 \text{(S355)} \]

\[t = \text{TAB("Profil/WG"; s; Bez=Stiel)} = 13.00 \text{ mm} \]

\[e = \text{TAB("Profil/WG"; e; Bez=Diagonale)} = 1.40 \text{ cm} \]

\[\text{Exzentrizität} = e + t/20 = 2.05 \text{ cm} \]

\[\sigma = 1.3 \times (\max.D \times m / A_D + \max.D \times m \times a \times e / (10 \times l_{1D})) = 7.58 \text{ kN/cm}^2 \]

\[\frac{\sigma}{R_e / (10 \times \gamma_M)} = 0.30 \leq 1 \]
Knotenblechanschluss

Belastung / Geometrie:
- Zugkraft $F_d = 150,00 \text{kN}$
- Kehlnaht $a = 3,0 \text{ mm}$
- Blechdicke min. $t = 10,0 \text{ mm}$
- Flanschdicke max. $t = 12,0 \text{ mm}$
- Schweißnahtlänge $L_1 = 50,0 \text{ mm}$
- Schweißnahtlänge $h = 160,0 \text{ mm}$
- Außermittigkeit $e = 20,0 \text{ mm}$
- $e_1 = 60,0 \text{ mm}$
- $e_2 = 80,0 \text{ mm}$
- $b = 50,0 \text{ mm}$
- $h = e+e_1+e_2 = 160,0 \text{ mm}$
- Winkel $\alpha = 45,0 ^\circ$
- α_w-Werte für Grenzschweißnahtspannungen DIN 18800-1 Tab.21
 - Beiwert $\alpha_w = 0,95$
 - Stahl = GEW("Material/DIN";Bez;) = S275
 - max. Erzeugnisdicke $t_{\text{max}} = \text{MAX}($min.$t; \text{max.}t) = 12,00 \text{ mm}$
 - $R_e = \text{TAB}("Material/DIN"; f_{yk}; t=t_{\text{max}}; \text{Bez=Stahl})/10 = 27,50 \text{kN/cm}^2$

Anschluß Stab - Knotenblech:
- $A_w = (2*L1+b) * a * 2 / 100 = 9,0 \text{ cm}^2$
- $\tau_{\text{II}} = F_d / A_w = 16,67 \text{kN/cm}^2$
- $\sigma_{w,R,d} = \alpha_w * R_e / 1,1 = 23,75 \text{kN/cm}^2$
- $\tau_{\text{II}} / \sigma_{w,R,d} = 0,70 \leq 1$
Anschluß Knotenblech an Stützenprofil:

\[
\begin{align*}
H &= F_d \cdot \sin(\alpha) = 106,07 \text{kN} \\
V &= F_d \cdot \cos(\alpha) = 106,07 \text{kN} \\
M &= H \cdot e/10 = 212,14 \text{kNcm} \\
A_w &= h \cdot a^2/100 = 9,6 \text{cm}^2 \\
W_w &= h^2 \cdot a \cdot 2 / (6 \cdot 1000) = 25,6 \text{cm}^3 \\
\sigma &= H / A_w + M / W_w = 19,3 \text{kN/cm}^2 \\
\sigma / \sigma_{w,R,d} &= 0.81 \leq 1
\end{align*}
\]

Nachweis Nahtmitte (max \(\tau\)):

\[
\begin{align*}
S_w &= 2 \cdot (h/2)^2 \cdot a / 2000 = 19,20 \text{cm}^3 \\
\tau_{II} &= \frac{V \cdot S_w \cdot 10^2}{a \cdot W_w \cdot h} = 16,57 \text{kn/cm}^2 \\
\sigma &= H / A_w = 11,05 \text{kn/cm}^2 \\
\sigma_{w,v} &= \sqrt{\tau_{II}^2 + \sigma^2} = 19,92 \text{kn/cm}^2 \\
\sigma_{w,v} / \sigma_{w,R,d} &= 0.84 \leq 1
\end{align*}
\]
Krafteinleitung Endauflager

Geometrie und Belastung:

Auflagerkraft $F = 100,30$ kN

<table>
<thead>
<tr>
<th>Material/Träger</th>
<th>Stahl = GEW("Material/DIN":Bez;)</th>
<th>= S275</th>
</tr>
</thead>
<tbody>
<tr>
<td>Träger Typ1</td>
<td>GEW("Profil/Profile": Bezug;)</td>
<td>= IPE</td>
</tr>
<tr>
<td>Nennhöhe NH1</td>
<td>GEW("Profil/Typ1;NH;")</td>
<td>= 200</td>
</tr>
<tr>
<td>s_o</td>
<td>TAB("Profil/Typ1; s; NH=NH1")</td>
<td>= 5,60 mm</td>
</tr>
<tr>
<td>t_o</td>
<td>TAB("Profil/Typ1; t; NH=NH1")</td>
<td>= 8,50 mm</td>
</tr>
<tr>
<td>r_o</td>
<td>TAB("Profil/Typ1; r; NH=NH1")</td>
<td>= 12,00 mm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Material/Träger</th>
<th>Träger Typ2 = GEW("Profil/Profile": Bezug;)</th>
<th>= HEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nennhöhe NH2</td>
<td>GEW("Profil/Typ2;NH;")</td>
<td>= 200</td>
</tr>
<tr>
<td>s_u</td>
<td>TAB("Profil/Typ2; s; NH=NH2")</td>
<td>= 6,50 mm</td>
</tr>
<tr>
<td>t_u</td>
<td>TAB("Profil/Typ2; t; NH=NH2")</td>
<td>= 10,00 mm</td>
</tr>
<tr>
<td>r_u</td>
<td>TAB("Profil/Typ2; r; NH=NH2")</td>
<td>= 18,00 mm</td>
</tr>
<tr>
<td>b</td>
<td>TAB("Profil/Typ2; b; NH=NH2")</td>
<td>= 200,00 mm</td>
</tr>
</tbody>
</table>

Material und Spannungen:

$\max.\text{ Erzeugnisdicke } t_{\max} = \MAX(s_o,s_u) = 6,50\text{ mm}$

$R_e = \frac{\text{ER:Material/DIN; } f_{yk; t=t_{\max}; Bez=Stahl}}{10} = 27,50\text{ kN/cm}^2$

Normalspannung im Schnitt $\sigma_x = 12,00\text{ kN/cm}^2$

$\gamma_M = 1,10$
Nachweis:

\[
c_o = \frac{(s_o + 1,61\gamma_o + 5\gamma_o)}{10} = 6,74 \text{ cm}
\]

\[
c_u = \frac{(s_u + 1,61\gamma_u + 5\gamma_u)}{10} = 8,55 \text{ cm}
\]

\[
l_o = \frac{c_u + 5 \cdot (t_o + r_o)}{10} = 18,80 \text{ cm}
\]

\[
l_o = \text{MIN}(\frac{b}{20} + \frac{l_o}{2}; l_o) = 18,80 \text{ cm}
\]

\[
F_{R,d} = \frac{s_o}{10} \cdot l_o \cdot \frac{R_e}{\gamma_M} \cdot \text{MIN}(1,25 \cdot \frac{0,5 \cdot \text{abs}(\sigma_x)}{R_e}; 1) = 263,20 \text{ kN}
\]

\[
F / F_{R,d} = 0,381 \leq 1
\]

\[
l_u = \frac{c_o + 5 \cdot (t_u + r_u)}{10} = 20,74 \text{ cm}
\]

\[
F_{R,d} = \frac{s_u}{10} \cdot l_u \cdot \frac{R_e}{\gamma_M} \cdot \text{MIN}(1,25 \cdot \frac{0,5 \cdot \text{abs}(\sigma_x)}{R_e}; 1) = 337,02 \text{ kN}
\]

\[
F / F_{R,d} = 0,298 \leq 1
\]
Knaagennaufüllager

Geometrie und Belastung:

- Auflagerkraft \(F = 100,30 \text{ kN} \)
- Auflagerbreite \(c = 2,00 \text{ cm} \)
- Normalspannung im Schnitt \(\sigma_x = 12,00 \text{ kN/cm}^2 \)
- \(\gamma_M = 1,10 \)
- Stahl \(\text{Stahl} = \text{GEW("Material/DIN"; Bez;)} = \text{S275} \)
- Profil Typ1 \(\text{Typ1} = \text{GEW("Profil/Profile"; Bez;)} = \text{IPE} \)
- Nennhöhe \(\text{NH1} = \text{GEW("Profil/Typ1"; NH;)} = 270 \)
- \(s = \text{TAB("Profil/Typ1"; s; NH=NH1)} = 6,60 \text{ mm} \)
- \(t = \text{TAB("Profil/Typ1"; t; NH=NH1)} = 10,20 \text{ mm} \)
- \(r = \text{TAB("Profil/Typ1"; r; NH=NH1)} = 15,00 \text{ mm} \)
- \(R_e = \text{TAB("Material/DIN"; \(f_{yk}\); t=s; Bez=Stahl)/10} = 27,50 \text{ kN/cm}^2 \)

Nachweis:

\[
I = c + 2,5 \times (t + r) \times 10^{-1} = 8,30 \text{ cm}
\]

\[
F_{R,d} = \frac{s \times I \times R_e}{10} \times \frac{0,5 \times \text{abs} (\sigma_x)}{\gamma_M} \times \text{MIN}(1,25 \times \frac{R_e}{R_e}; 1) = 136,95 \text{ kN}
\]

\[
\frac{F}{F_{R,d}} = 0,732 \leq 1
\]
Rahmenecke mit bündiger Stirnplatte

Einwirkungen / Materialkennwerte:

\[
M_d = 80,00 \text{ kNm} \\
V_d = 50,00 \text{ kN} \\
\]

Träger Typ 1	GEW(“Profil/Profile”; Bez;)	IPE
Nennhöhe NH1	GEW(“Profil/Typ1;NH;)	400
Träger Typ 2	GEW(“Profil/Profile”; Bez;)	IPE
Nennhöhe NH2	GEW(“Profil/Typ2;NH;)	500

VB	GEW(“Verbindungen/Schr”;VB;)	SLS
Schraube	GEW(“Verbindungen/Schr”; SG;)	M 24
FK	GEW(“Verbindungen/Schr”; FK;)	10.9
Stahl	GEW(“Material/DIN”;Bez;)	S275
\(R_s \)	TAB(“Material/DIN”; \(f_{yk} \); Bez=Stahl)/10	27,50 kN/cm²
\(f_{y,b,k} \)	TAB(“Verbindungen/Schr”; \(f_{yk} \); FK=FK)/10	90,00 kN/cm²
\(f_{u,b,k} \)	TAB(“Verbindungen/Schr”; \(f_{uk} \); FK=FK)/10	100,00 kN/cm²
Beiwert \(\gamma_M \)	1,10	

Anzahl der Schrauben \(n = 2 \)
\(d_{Sch} = \) TAB(“Verbindungen/Schr”; d; SG=Schraube) = 24,0 mm
Lochspiel \(\Delta d = 1,00 \) mm
Lochdurchmesser \(d_L = d_{Sch} + \Delta d = 25,00 \) mm
\(\alpha_a = \) TAB(“Verbindungen/Schr”; \(\alpha_a \); FK=FK; VB=VB) = 0,55
Scheibendurchmesser \(D = 44,0 \) mm
Schraubenabstand \(a_p = 65,0 \) mm
\(A_{Sp} = \) TAB(“Verbindungen/Schr”; \(A_{sp} \); SG=Schraube) = 3,53 cm²
\(A_{Sch} = \) TAB(“Verbindungen/Schr”; \(A_{sch} \); SG=Schraube) = 4,52 cm²
\(\sigma_{R,d,1} = \frac{f_{y,b,k}}{1,1 \cdot \gamma_M} = 74,4 \text{ kN/cm²} \)
\(\sigma_{R,d,2} = \frac{f_{u,b,k}}{1,25 \cdot \gamma_M} = 72,7 \text{ kN/cm²} \)
\(N_{R,d} = \text{MIN}(A_{Sch} \cdot \sigma_{R,d,1} ; A_{Sp} \cdot \sigma_{R,d,2}) = 256,63 \text{ kN} \)
Geometrie von Träger und Stirnplatte:

\(h_t = \text{TAB(Profil/Typ1; h; NH=NH1)} = 400,00 \text{ mm} \)
\(b_t = \text{TAB(Profil/Typ1; b; NH=NH1)} = 180,00 \text{ mm} \)
\(t_t = \text{TAB(Profil/Typ1; t; NH=NH1)} = 13,50 \text{ mm} \)

Stirnplatte \(b_p = 200,0 \text{ mm} \)
Stirnplatte \(d_p = 35,0 \text{ mm} \)

Schweißnaht \(a_c = 7,0 \text{ mm} \)

Spannungsnachweise:

Aufteilung des Momentes auf die Gurte nach DIN 18800 T1, Element 801:

\[Z_{d,t} = \frac{M_d \cdot 10^2}{(h_t - t_t)/10} = 207,0 \text{ kN} \]

Nachweis am Flansch:

\[\sigma = \frac{Z_{d,t} \cdot 10^2}{(b_t \cdot t_t)} = 8,52 \text{ kN/cm}^2 \]

\[\sigma_w,R,d = \frac{R_e}{\gamma_M} = 25,00 \text{ kN/cm}^2 \]

\[\frac{\sigma}{\sigma_w,R,d} = 0,34 \leq 1 \]

Rechnerische Hebelarme:

\[c_1 = a_2 - t_t - (D/4 + d_p/2) = 23,0 \text{ mm} \]
\[c_3 = D/2 + d_p = 57,0 \text{ mm} \]

Beim Erreichen der Grenzzugkraft der Schrauben soll der Zugflansch durchplastiziert sein. Es gilt: \(M_{II} \leq M_{II,pl} ; Z_t \leq V_{pl} ; K \leq V_{pl} \). Es ergeben sich folgende Schnittgrößen:

\[A = 2 \cdot \frac{c_1 + c_3}{1,1 \cdot t_t} = 10,77 \]

\[B = \frac{4 \cdot n \cdot N_{R,d} \cdot c_3}{1,1 \cdot R_e / \gamma_M \cdot b_t \cdot t_t^2 \cdot 10^{-2}} = 12,97 \]

\[Z_t = \left(\frac{R_e \cdot b_t \cdot t_t^2 \cdot 10^{-2}}{\gamma_M} \right) \left(\sqrt{A + \sqrt{A^2 + B + 1}} \right) = 382,8 \text{ kN} \]

\[V_{pl} = \frac{R_e}{\gamma_M \cdot \sqrt{3}} \cdot b_p \cdot d_p \cdot t_t^2 \cdot 10^{-2} = 1010,4 \text{ kN} \]

\[Z_t / V_{pl} = 0,379 \leq 1 \]

\[\kappa = 1 \cdot \left(\frac{Z_t}{R_e / \gamma_M \cdot b_t \cdot t_t^2 \cdot 10^{-2}} \right)^2 = 0,603 \]
\[M_{I,pl} = 1,1 \cdot \frac{R_e \cdot b_t \cdot 10^{-1} \cdot (t_t / 10)^2}{\gamma_M} \cdot \kappa = 136,0 \text{ kNcm} \]

\[M_{II} = \frac{n \cdot N_{R,d} \cdot M_{I,pl}}{c_1 \cdot 10^{-1}} \left(\frac{1}{(c_1 \cdot 10^{-1})^2} + \frac{1}{(c_3 \cdot 10^{-1})^2} \right) = 744,2 \text{ kNcm} \]

\[M_{I,pl} = 1,1 \cdot \frac{R_e \cdot (b_p \cdot 2 \cdot d_L) \cdot 10^{-1} \cdot (d_p \cdot 10^{-1})^2}{\gamma_M} \cdot \kappa = 1263,3 \text{ kNcm} \]

\[M_{II} / M_{I,pl} = 0,589 \leq 1 \]

\[V_{pl} = \frac{R_e \cdot b_p \cdot d_p \cdot 10^{-2}}{\gamma_M \cdot \sqrt{3}} = 1010,4 \text{ kNcm} \]

\[\frac{M_{II}}{V_{pl} \cdot c_3 \cdot 10^{-1}} = 0,129 \leq 1 \]

\[M_{R,d} = Z_t \cdot (h_t - t_t) / 10 = 14795,2 \text{ kNcm} \]

\[100 \cdot M_d / M_{R,d} = 0,541 \leq 1 \]

Schweißanschluss des Gurtes:

\[l_w = \frac{b_t}{10} = 18,0 \text{ cm} \]

\[a_w = 0,5 \text{ cm} \]

\[\alpha_w = \begin{cases} 0,95 & \text{falls } R_e < 24, \\ 0,8 & \text{falls } R_e \geq 24 \end{cases} \]

\[\alpha_w = 0,80 \]

\[\sigma = \frac{Z_{d,t}}{2 \cdot l_w \cdot a_w} = 11,50 \text{ kN/cm}^2 \]

\[\sigma_{w,R,d} = \alpha_w \cdot R_e / 1,1 \]

\[\sigma / \sigma_{w,R,d} = 0,575 \leq 1 \]
Nachweis der Querkraftübertragung:

\[
V_a = \frac{V_d}{2} = 25,00 \text{kN}
\]

\[
V_{a,R,d} = \frac{\pi \left(d_{Sch} \cdot 10^{-1} \right)^2 \cdot f_{u,b,k} \cdot \alpha_a}{4 \cdot \gamma_M} = 226,19 \text{kN}
\]

\[
\frac{V_a}{V_{a,R,d}} = 0,111 \leq 1
\]

gewählt \(e = 65,0 \text{ mm} \)
gewählt \(e_1 = 50,0 \text{ mm} \)
gewählt \(e_2 = 37,50 \text{ mm} \)
gewählt \(e_3 = 75,0 \text{ mm} \)

\(e_2 / d_L = 1,5 \)
\(e_3 / d_L = 3,0 \)

Bedingung für die Abstände in Kraftrichtung:
1,2 \(d_L \leq e_1 \leq 3,0 \ d_L \)
2,2 \(d_L \leq e \leq 3,5 \ d_L \)
\(\alpha_L = \text{MIN}(\alpha_1 ; \alpha_2) = 1,900 \)

\[
V_{l,R,d} = \frac{d_p}{10} \cdot d_{sch} \cdot 10 \cdot \alpha_L \cdot R_e / \gamma_M = 399,00 \text{kN}
\]

\[
v = \frac{V_a}{V_{l,R,d}} = 0,063 \leq 1
\]

Nachweis der Gebrauchstauglichkeit:

\(P_v = \text{TAB(Verbindungen/Schr" ;Fv ; SG=Schraube; FK=FK)} = 220,00 \text{kN} \)
\(Z_{t,Gebr} = 2 \cdot n \cdot 0,7 \cdot P_v \cdot 1,5 = 924,0 \text{kN} \)

\[
Z_{d,t} / Z_{t,Gebr} = 0,224 \leq 1
\]

Nachweis der steifenlosen Krafteinleitung:

Querschnittswerte und Spannungen der Stütze

\(s_s = \text{TAB(Profil/Typ2; s; NH=NH2)} = 10,2 \text{ mm} \)
\(t_s = \text{TAB(Profil/Typ2; t; NH=NH2)} = 16,0 \text{ mm} \)
\(r_s = \text{TAB(Profil/Typ2; r; NH=NH2)} = 21,0 \text{ mm} \)

Normalspannung im Schnitt \(\sigma_x = 12,00 \text{kN/cm}^2 \)

Nachweis:

\[
l_o = \left(l_t + 5 \cdot (l_s + r_s + d_p) \right) \cdot 10^{-1} = 37,35 \text{ cm} \]

\[
F_{R,d} = s_d / 10 \cdot l_o \cdot R_e \cdot \text{MIN}(1,25-0,5 \cdot \text{ABS}(\sigma_x)/R_e;1)/\gamma_M = 952,42 \text{kN} \]

\[
Z_{d,t} / F_{R,d} = 0,217 \leq 1
\]

⇒ keine Steifen erforderlich
Schraubenanschluss

Systemwerte:

\[
N = 925,00 \text{ kN} \\
\alpha = 45,00^\circ
\]

je Schraube:

\[
N_s = 0,25 \cdot N \cdot \cos(\alpha) = 163,52 \text{ kN} \\
V_s = 0,25 \cdot N \cdot \sin(\alpha) = 163,52 \text{ kN}
\]

gewählt:

- Schraube Schr = GEW("Verbindungen/Schr"; SG;) = M 24
- Verbindungsart VB = GEW("Verbindungen/Schr"; VB;) = SLS
- Festigkeitsklasse FK = GEW("Verbindungen/Schr"; FK;) = 10.9
- \(N_{R,d} = \text{TAB("Verbindungen/Schr"; } N_{R,d}; \text{ } \text{SG=Schr; } \text{FK=FK;VB=VB}) = 257,00 \text{ kN}\)
- \(V_{a,R,d} = \text{TAB("Verbindungen/Schr"; } V_{a,R,d}; \text{ } \text{SG=Schr; } \text{FK=FK;VB=VB}) = 226,00 \text{ kN}\)

Nachweis:

\[
\left(\frac{N_s}{N_{R,d}} \right)^2 + \left(\frac{V_s}{V_{a,R,d}} \right)^2 = 0.93 \leq 1
\]
Biegesteifer Trägeranschluß

Belastung:
- Moment $M_{S,d} = -280,00 \text{ kNm}$
- Zugkraft $N_{S,d} = 200,00 \text{ kN}$
- Querkraft $Q_{S,d} = 250,00 \text{ kN}$

Geometrie:
- Stahl = GEW("Material/DIN";Bez;) = S275
- Träger Typ1 = GEW("Profil/Profile";Bez;) = IPB
- Nennhöhe NH1 = GEW("Profil/Typ1;NH;") = 300
- Kehlnaht am Gurt $a_g = 8,0 \text{ mm}$
- Kehlnaht am Steg $a_st = 4,0 \text{ mm}$
- $b = \text{TAB("Profil/Typ1; b; NH=NH1"} = 300,000 \text{ mm}$
- $t = \text{TAB("Profil/Typ1; t; NH=NH1"} = 19,000 \text{ mm}$
- $h = \text{TAB("Profil/Typ1; h; NH=NH1"} = 300,000 \text{ mm}$
- $s = \text{TAB("Profil/Typ1; s; NH=NH1"} = 11,000 \text{ mm}$

Schweißnähte:
- $A_{Gurt} = a_g * (b + 2*t + b-s) * 10^{-2} = 50,2 \text{ cm}^2$
- $A_{Steg} = 2 * a_{st} * h / 100 = 24,0 \text{ cm}^2$
- α_w-Werte für Grenzschweißnahtspannungen nach DIN 18800-1 Tab.21
- Beiwert $\alpha_w = 0,95$
- $R_e = \text{TAB("Material/DIN"; f_{yk}; t; Bez=Stahl)/10} = 27,50 \text{ kN/cm}^2$
- $\sigma_{w,R,d} = \alpha_w * R_e / 1,1 = 23,75 \text{ kN/cm}^2$

Nachweise:
- $A_w = 2*A_{Gurt} + A_{Steg} = 124,4 \text{ cm}^2$
- $I_w = 2^2 * A_{Gurt} * \left(\frac{(h + t)}{20} \right)^2 + \frac{2 * a_{st} * h^3}{12 * 10^4} = 27342,0 \text{ cm}^2$
- $A = 2^2 * A_{Gurt} + A_{Steg} = 124,4 \text{ cm}^2$
- $\sigma_w = \frac{N_{S,d} + \text{ABS}(100*M_{S,d})}{A} * \left(\frac{h}{2} + t \right) \div I_w \times 10 = 18,9 \text{ kN/cm}^2$
\[
\sigma_{w,h} = \frac{N_{S,d}}{A} + \frac{\text{ABS}(100 \cdot M_{S,d})}{l_w \cdot 10} \cdot \frac{h}{2} \quad = \quad 17,0 \text{ kN/cm}^2
\]
\[
\sigma_w / \sigma_{w,R,d} \quad = \quad 0,80 < 1
\]
\[
\tau_w = \frac{\text{ABS}(Q_{S,d})}{A_{\text{Steg}}} \quad = \quad 10,42 \text{ kN/cm}^2
\]
\[
\tau_w / \sigma_{w,R,d} \quad = \quad 0,44 < 1
\]
\[
\sigma_{w,v} = \sqrt{\left(\sigma_{w,h}^2 + \tau_w^2\right)} \quad = \quad 19,94 \text{ kN/cm}^2
\]
\[
\sigma_{w,v} / \sigma_{w,R,d} \quad = \quad 0,84 < 1
\]
Stahlstütze nach DIN 18800

Systemwerte und Einwirkungen:
- Systemlänge \(L = 4,50 \, \text{m} \)
- Knicklängenbeiwert \(\beta = 1,00 \)
- Normalkraft \(N = 1900,00 \, \text{kN} \)

- Profil Typ = GEW("Profil/Profile"; Bez;) = IPB
- Nennhöhe NH = GEW("Profil/Typ;NH;") = 280
- Stahl = GEW("Material/DIN";Bez;) = S275

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I)</td>
<td>6590,00 cm²</td>
</tr>
<tr>
<td>(A)</td>
<td>131,00 cm²</td>
</tr>
<tr>
<td>(h)</td>
<td>280,00 mm</td>
</tr>
<tr>
<td>(b)</td>
<td>280,00 mm</td>
</tr>
<tr>
<td>(N_{pl,d})</td>
<td>2870,00 kN</td>
</tr>
<tr>
<td>(R_e)</td>
<td>275,00 N/mm²</td>
</tr>
</tbody>
</table>

Berechnung:
- \(s_k = \beta \cdot L \cdot 100 = 450,00 \, \text{cm} \)
- \(i = \sqrt{\frac{l}{A}} = 7,09 \, \text{m} \)

\[
\lambda_a = \pi \sqrt{\frac{210000}{R_e}} = 86,81
\]

\[
\lambda_k = \frac{s_k}{i} = 63,47
\]

\[
\lambda_{k,bez} = \frac{\lambda_k}{\lambda_a} = 0,731
\]

Knickspannungslinie und Faktor \(\kappa \):
- \(h/b = 1,00 \)
- \(\kappa_{nl} = c \)
- \(\alpha = \text{TAB("Beiwerte/kappa"; } \alpha; \kappa_{nl}=\kappa_{nl}) = 0,49 \)
- \(k = 0,5 \cdot (1 + \alpha \cdot (\lambda_{k,bez} - 0,20) + \lambda_{k,bez}^2) = 0,897 \)
- \(\kappa = \text{MIN} \left(\frac{1}{k + \sqrt{k^2 - \lambda_{k,bez}^2}; 1,0} \right) = 0,706 \)

\[
N = \frac{\kappa \cdot N_{pl,d}}{0,938 \leq 1}
\]
Trägeranschluß gelenkig

System und Lasten:

\[V_d = 200,00 \text{ kN} \]

Stahl = GEW("Material/DIN";Bez;) = S275
VB = GEW("Verbindungen/Schr";VB;) = SLS
Schraube Schr= GEW("Verbindungen/Schr"; SG;) = M 24
FK = GEW("Verbindungen/Schr"; FK;) = 4.6

\[R_e = \text{TAB("Material/DIN"; } f_{yk}; \text{ Beiz=Stahl})/10 = 27,50 \text{ kN/cm}^2 \]
\[f_{y,b,k} = \text{TAB("Verbindungen/Schr"; } f_{ybk}; \text{ FK=FK})/10 = 24,00 \text{ kN/cm}^2 \]
\[f_{u,b,k} = \text{TAB("Verbindungen/Schr"; } f_{ubk}; \text{ FK=FK})/10 = 40,00 \text{ kN/cm}^2 \]

Beiwert \(\gamma_M = 1,10 \)

\[d_{Sch} = \text{TAB("Verbindungen/Schr"; } d; \text{ SG=Schr}) = 24,0 \text{ mm} \]
Lochspiel \(\Delta d = 1,00 \text{ mm} \)
Lochdurchmesser \(d_l = d_{Sch} + \Delta d = 25,00 \text{ mm} \)
\[\alpha_a = \text{TAB("Verbindungen/Schr"; } \alpha_a; \text{ FK=FK; VB=VB}) = 0,60 \]

Nachweis Querträger - Winkel:

Schaubenenabstände
Anschluß Querträger-Winkel
\[e_{1l} = 50,0 \text{ mm} \]
\[e_{2l} = 45,0 \text{ mm} \]
Anschluß Profil-Winkel
\[e_{1p} = 55,0 \text{ mm} \]
\[e_{2p} = 45,0 \text{ mm} \]

\[\text{min. } e_1 = \text{MIN(} e_{1l}; e_{1p} \text{)} = 50,00 \text{ mm} \]
\[\text{min. } e_2 = \text{MIN(} e_{2l}; e_{2p} \text{)} = 45,00 \text{ mm} \]
Schraubenkraft der max. beanspruchten Schraube

Anzahl der Schrauben \(n = 4 \)
Schnittigkeit \(m = 2 \)
Anzahl in x-Richtung \(n_x = 1 \)
Abstand in x-Richtung \(e_x = 0 \text{ mm} \)
Anzahl in z-Richtung \(n_z = 4 \)
Abstand in z-Richtung \(e_z = 80,00 \text{ mm} \)
Hebel der Last \(a = 55 \text{ mm} \)

Gesamtanzahl \(n_Q = n_x \cdot n_z = 4 \)

\[
I_p = \frac{n_Q}{12} \left((n_x^2-1) \cdot e_x^2 + (n_z^2-1) \cdot e_z^2 \right) = 32000,00 \text{ mm}^2
\]

\[
R_{ld} = V_d \cdot \sqrt{\frac{1}{n} + a \cdot (n_x - 1) \cdot \frac{\theta_x}{I_p \cdot 2} + (a \cdot (n_z - 1) \cdot \frac{\theta_z}{I_p \cdot 2})^2} = 64,82 \text{ kN}
\]

Nachweis auf Abscheren:
\[
V_{a,R,d} = TAB("Verbindungen/Schr"; V_{a,Rd}; SG=Schr; FK=FK;VB=VB) = 98,60 \text{ kN}
\]
\[
v = \frac{V_d}{2 \cdot n_Q \cdot V_{a,R,d}} = 0,254 \leq 1
\]

Nachweis auf Lochleibungsspannung:
Dicke für Lochleibung \(\text{min.t} = 8,60 \text{ mm} \)

\[
e = e_z = 80,00 \text{ mm}
\]

\[
e/d_L = 3,20
\]

\[
e_1/d_L = 2,00
\]

\[
e_2/d_L = 1,80
\]

\[
\alpha_L = \alpha_1 = 1,900
\]

\[
V_{l,R,d} = \frac{\text{min.t} \cdot d_{Sch}/100 \cdot \alpha_L \cdot R_e}{\gamma_M} = 98,04 \text{ kN}
\]

\[
v = \frac{R_{ld}}{V_{l,R,d}} = 0,661 \leq 1
\]
Nachweis Hauptträger - Winkel:
Anzahl der Schrauben $n_H = 6$

Schraubenabstände
Anschluß Hauptträger-Winkel
$e_{z1} = 80,0 \text{ mm}$
$e_1 = 60,0 \text{ mm}$
$e_2 = 45,0 \text{ mm}$
$e_3 = 120,0 \text{ mm}$

Nachweis auf Lochleibungsspannung (Profil/Winkel):
Dichte Profil $t_p = 10,20 \text{ mm}$
Dichte Winkel $t_L = 10,00 \text{ mm}$
maßgebende Dicke $t = \text{MIN}(t_p; t_L) = 10,00 \text{ mm}$

Bedingung für die Abstände in Kraftrichtung:
Randabstand $1,2 d_L \leq e \leq 3,0 d_L$
Lochabstand $2,2 d_L \leq e \leq 3,5 d_L$

\[
\begin{align*}
e &= e_{z1} = 80,00 \text{ mm} \\
e/d_L &= 3,20 \\
e_1/d_L &= 2,40 \\
e_2/d_L &= 1,80 \\
e_3/d_L &= 4,80 \\
\alpha_L &= \text{MIN}(\alpha_1; \alpha_2) = 2,340 \\
V_{l,R,d} &= \min.t \cdot d_{Sch}/100 \cdot \alpha_L \cdot R_p / \gamma_M = 140,40 \text{ kN} \\
v &= R_{id} / V_{l,R,d} = 0,462 \leq 1 \\
\end{align*}
\]

Nachweis auf Abscheren:
\[
\begin{align*}
v &= \frac{V_d}{n_H \cdot V_{a,R,d}} = 0,338 \leq 1 \\
\end{align*}
\]
Unversteiftes Beulfeld nach DIN 18800 T.3

Eingabedaten:
Geometrie:
Beulfeldlänge $a = 200$ mm
Beulfeldbreite $b = 800$ mm
Blechdicke $t = 6$ mm

Material:
Stahl = GEW("Material/DIN";Bez;) = S355

Spannungen:
σ_1, σ_2 und τ sind die mit γ_F-fachen Schnittgrößen ermittelten Spannungen.
σ_1: betragsmäßig größte Druckspannung (Druck positiv)
σ_2: Spannung am gegenüberliegenden Rand (Zug negativ)
τ: Schubspannungen (immer positiv)

$\sigma_1 = 8,00$ kN/cm²
$\sigma_2 = 6,00$ kN/cm²
$\tau = 2,00$ kN/cm²
Berechnungsergebnisse:
Materialkennwerte:
\[f_{y,k} = \frac{\text{TAB("Material/DIN"; f_{y,k}; Bez=Stahl; t=t)/10} = 36,00 \text{kN/cm}^2 \]
Beiwert \(\gamma_M = 1,10 \)
\[f_{y,d} = \frac{f_{y,k}}{\gamma_M} = 32,73 \text{kN/cm}^2 \]

Vorwerte:
\[\alpha = a / b \]
\[\psi = \sigma_2 / \sigma_1 \]
\[\sigma_e = 1,898 \cdot \left(\frac{100 \cdot t}{b} \right)^2 = 1,068 \text{kN/cm}^2 \]
\[k_1 = \frac{15,87 + 1,87}{\alpha^2} + 8,6 \cdot \alpha^2 = 46,33 \]
\[k_2 = 7,81 - 6,29 \cdot \psi + 9,78 \cdot \psi^2 = 8,59 \]
\[k_3 = \frac{8,2}{\psi + 1,05} = 4,56 \]
\[k_4 = \left(\frac{1 + \psi}{\alpha} \right) \cdot \frac{2,1}{\psi + 1,1} = 20,50 \]
\[k_5 = \text{WENN}(\psi \leq -1; \text{WENN}(\alpha \geq 1; 5,34 + 4,0 + 5,34) = 89,44 \text{kN/cm}^2 \]
\[k_6 = \text{WENN}(\psi > 1 \text{ UND } \psi < 0; k_3; k_4)) = 20,50 \]

Ideale Beulspannungen
\[s_{xPi} = k_x \cdot \sigma_e = 21,89 \text{kN/cm}^2 \]
\[\tau_{Pi} = k_z \cdot \sigma_e = 95,52 \text{kN/cm}^2 \]

Abminderungsfaktoren:
bei alleiniger Wirkung von \(\sigma_x \)
\[\lambda_{px,bez} = \sqrt{\frac{f_{y,k}}{s_{xPi}}} = 1,282 \]
\[c = \text{MIN}(1,25 - 0,25 \cdot \psi; 1,25) = 1,063 \]
\[\kappa_x = \text{MIN}(c^2(1 / \lambda_{px,bez} - 0,22 / \lambda_{px,bez}^2); 1,0) = 0,687 \]

bei alleiniger Wirkung von \(\tau \)
\[\lambda_{pt,bez} = \sqrt{\frac{f_{y,k}}{\sqrt{3} \cdot \tau_{Pi}}} = 0,466 \]
\[\kappa_t = \text{MIN}(0,84 / \lambda_{pt,bez}; 1,0) = 1,000 \]

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Grenzbeulspannungen:
\[
\sigma_{xP,R,d} = \kappa_x \frac{f_{y,k}}{\gamma_M} = 22,48 \text{ kN/cm}^2
\]
\[
\tau_{P,R,d} = \frac{\kappa_t \cdot f_{y,k}}{\sqrt{3} \cdot \gamma_M} = 18,90 \text{ kN/cm}^2
\]

Nachweis:
\[
x = 1 + \kappa_x^4 = 1,223
\]
\[
z = 1 + \kappa_x \cdot \kappa_t^2 = 1,687
\]
\[
\left(\frac{\sigma_1}{\sigma_{xP,R,d}} \right)^x + \left(\frac{\tau}{\tau_{P,R,d}} \right)^z = 0,305 \leq 1
\]

Knickstabähnliches Verhalten:
\[
k = 0,5 \cdot (1 + 0,34 \cdot (\lambda_{Px,bez}^2 - 0,2) + \lambda_{Px,bez}^2) = 1,506
\]
\[
\kappa_K = \text{MIN}\left(\frac{1}{k + \sqrt{\kappa_t^2 - \lambda_{Px,bez}^2}}; 1,0\right) = 0,435
\]
\[
\sigma_{Pl,\sigma_K} = \text{MAX}(k_x + \alpha^2; 1,0) = 1,281
\]
\[
\Lambda = \text{WENN}((\lambda_{Px,bez}^2 + 0,5) < 2; 0; 2; 0; 4; 0; \lambda_{Px,bez}^2 + 0,5) = 2,144
\]
\[
\varphi = \text{MAX}((\Lambda - \sigma_{Pl,\sigma_K}) / (\Lambda - 1); 0) = 0,754
\]
\[
\kappa_{xPK} = (1 - \varphi^2) \cdot \kappa_x + \varphi^2 \cdot \kappa_K = 0,544
\]
\[
\sigma_{xPK,R,d} = \kappa_{xPK} \frac{f_{y,k}}{\gamma_M} = 17,80 \text{ kN/cm}^2
\]

Nachweis:
\[
x = 1 + \kappa_{xPK}^4 = 1,088
\]
\[
z = 1 + \kappa_{xPK} \cdot \kappa_t^2 = 1,544
\]
\[
\left(\frac{\sigma_1}{\sigma_{xPK,R,d}} \right)^x + \left(\frac{\tau}{\tau_{P,R,d}} \right)^z = 0,450 \leq 1
\]
Versteifte Fußplatte

Eingabedaten:
Material / Querschnitte / Geometrie:
- Stahl = GEW("Material/DIN":Bez;) = S235
- Beton = GEW("Material/DIN1045;Bez;") = C16/20
- Stützenprofil:
 - Profil Typ1 = GEW("Profil/Profile"; Bez;) = HEA
 - Nennhöhe NH1 = GEW("Profil/Typ1;NH;") = 500
- Fußplatte:
 - Höhe $h_p = 90,00$ cm
 - Breite $b_p = 50,00$ cm
 - Dicke $d_p = 3,50$ cm
 - Ankerlochdurchmesser $d_L = 3,50$ cm
- Steifen:
 - Höhe $h_{St} = 30,00$ cm
 - Dicke $t = 2,00$ cm
 - Eckverschnitt $e = 5,00$ cm
Schweißnähte:
Doppelkehlnaht \(a_1 = 0,60 \text{ cm} \)
DHY-Naht mit Doppelkehlnaht \(a_2 = 1,00 \text{ cm} \)
HY-Naht mit Kehlnaht \(a_3 = 1,80 \text{ cm} \)
Ringsumlaufende Kehlnaht \(a_4 = 0,60 \text{ cm} \)

Einwirkungen:
Bemessungswerte der Auflagerkräfte
Normalkraft \(N_d = 2700,00 \text{ kN} \)

Berechnungsergebnisse:
Materialkennwerte:
Stahl:
\(f_{y,k} = \frac{\text{TAB("Material/DIN"; f_{yk}; Bez=Stahl)}}{10} = 24,00 \text{ kN/cm}^2 \)
\(\gamma_M = 1,10 \)
\(f_{y,d} = \frac{f_{y,k}}{\gamma_M} = 21,82 \text{ kN/cm}^2 \)
\(\sigma_{Rd} = \frac{f_{y,k}}{\gamma_M} = 21,82 \text{ kN/cm}^2 \)
\(t_{Rd} = \frac{f_{y,k}}{\sqrt{3} \cdot \gamma_M} = 12,60 \text{ kN/cm}^2 \)

Beiwerk \(\alpha_w = \text{WENN}(\text{Stahl} = "S235" ; 0,95; 0,80) = 0,95 \)
\(\tau_{W,R,d} = \alpha_w \cdot f_{y,d} = 20,73 \text{ kN/cm}^2 \)
\(\sigma_{W,R,d} = \alpha_w \cdot f_{y,d} = 20,73 \text{ kN/cm}^2 \)
Beton:
\(\beta_{Rd} = 0,85 \cdot \text{TAB("Material/DIN1045"; f_{ck}; Bez=Beton)} / 15 = 0,91 \text{ kN/cm}^2 \)

Querschnittswerte:
Stützenprofil:
\(h = \text{TAB("Profil/"Typ1; h; NH=NH1)/10} = 49,00 \text{ cm} \)
\(b = \text{TAB("Profil/"Typ1; b; NH=NH1)/10} = 30,00 \text{ cm} \)
\(t_g = \text{TAB("Profil/"Typ1; t; NH=NH1)/10} = 2,30 \text{ cm} \)
\(s = \text{TAB("Profil/"Typ1; s; NH=NH1)/10} = 1,20 \text{ cm} \)
\(r = \text{TAB("Profil/"Typ1; r; NH=NH1)/10} = 2,70 \text{ cm} \)
\(U = 2 \cdot (2 \cdot b + h - 4 \cdot r - s + \pi \cdot r) = 210,96 \text{ cm} \)

Betonpressung:
\(A_N = h_p \cdot b_p - 4 \cdot \pi \cdot d_L^2 / 4 = 4461,52 \text{ cm}^2 \)
\(\sigma_b = N_d / A_N = 0,605 \text{ kN/cm}^2 \)
\(\sigma_b / \beta_{Rd} = 0,665 \leq 1 \)
Nachweis der Fußplatte:

Balkenmethode Schnitt 1-1:

\[
d = \frac{b_p \cdot b}{2} + 1,0 = 11,00 \text{ cm}
\]

\[
c = b_p - 2 \cdot (d + t) = 24,00 \text{ cm}
\]

\[
M_r = \sigma_b \cdot \frac{(d + \frac{t}{2})^2}{2} = 43,560 \text{kNcm/cm}
\]

\[
M_m = \sigma_b \cdot \frac{(c + t)^2}{8} \cdot M_r = 7,56 \text{kNcm/cm}
\]

\[
\text{max}.M = \text{MAX}(M_r; \text{ABS}(M_m)) = 43,56 \text{kNcm/cm}
\]

\[
erf.d_p = \sqrt[6]{6 \cdot \frac{\text{max}.M}{R_d}} = 3,46 \text{ cm}
\]

\[
erf.d_p / d_p = 0,989 < 1
\]

Stützenanschluß:

Es wird unterstellt, daß die Stütze winkelrecht gesägt wird. Der Nachweis erfolgt dann für \(N_d/4\). Die Steifenflächen werden vernachlässigt.

\[
\text{min}.a_4 = \frac{\sqrt{d_p \cdot 10 - 0,5}}{10} = 0,54 \text{ cm}
\]

\[
\text{min}.a_4 / a_4 = 0,900 < 1
\]

\[
A_w = U \cdot a_4 = 126,58 \text{ cm}^2
\]

\[
\sigma_w = \frac{N_d}{4 \cdot A_w} = 5,33 \text{kN/cm}^2
\]

\[
\sigma_w / \sigma_{w,R,d} = 0,257 < 1
\]

Steifenanschluß:

\[
b = \frac{h_p - h}{2} = 20,50 \text{ cm}
\]

\[
a = h_p - 2 \cdot (b + t) = 45,00 \text{ cm}
\]

\[
R_1 = \sigma_b \cdot b \cdot b_p / 2 = 310,06 \text{kN}
\]

\[
A_{w1} = 2 \cdot a_1 \cdot (b - e) = 18,60 \text{ cm}^2
\]

\[
\sigma_{w1} = R_1 / A_{w1} = 16,67 \text{kN/cm}^2
\]

\[
\sigma_{w1} / \sigma_{w,R,d} = 0,804 < 1
\]
\[M = \frac{R_1 \cdot b + e}{2} = 3953,26 \text{ kNcm} \]

\[W_{w2} = 2 \cdot a_2 \cdot \frac{(h_{St} \cdot e)^2}{6} = 208,33 \text{ cm}^3 \]

\[A_{w2} = 2 \cdot a_2 \cdot (h_{St} \cdot e) = 50,00 \text{ cm}^2 \]

\[\sigma_{w2} = \frac{M}{W_{w2}} = 18,98 \text{ kN/cm}^2 \]

\[\tau_{w2} = \frac{R_1}{A_{w2}} = 6,20 \text{ kN/cm}^2 \]

\[\sigma_{w2,v} = \sqrt{\sigma_{w2}^2 + \tau_{w2}^2} = 19,97 \text{ kN/cm}^2 \]

\[\sigma_{w2,v} / \sigma_{w,R,d} = 0,963 < 1 \]

Nachweis der Steife:

\[A = t \cdot (h_{St} - e) = 50,00 \text{ cm}^2 \]

\[W = t \cdot \frac{(h_{St} \cdot e)^2}{6} = 208,33 \text{ cm}^3 \]

\[\sigma = \frac{M}{W} = 18,98 \text{ kN/cm}^2 \]

\[\sigma / \sigma_{Rd} = 0,870 < 1 \]

\[\tau_m = \frac{R_1}{A} = 6,20 \text{ kN/cm}^2 \]

\[\tau_m / \tau_{Rd} = 0,492 < 1 \]

\[\sigma_v = \sqrt{\sigma^2 + 3 \cdot \tau_m^2} = 21,81 \text{ kN/cm}^2 \]

\[\sigma_v / \sigma_{Rd} = 1,000 < 1 \]

Steife zwischen den Flanschen:

Balkenmodell Schnitt 2-2:

\[\sigma_b \cdot \left(\frac{d + \frac{t}{2}}{2} \right)^2 \]

\[M_C = \frac{\sigma_b \cdot \left(\frac{d + \frac{t}{2}}{2} \right)^2}{2} = 43,56 \text{ kNcm/cm} \]

\[C = \sigma_b \cdot \left(\frac{d + \frac{t}{2}}{2} \right) + \frac{1,5 \cdot M_C}{0,5 \cdot (c + t)} \cdot \frac{3}{8} \cdot \sigma_b \cdot 0,5 \cdot (c + t) = 15,24 \text{ kN/cm} \]

\[D = \frac{5}{8} \cdot \sigma_b \cdot 0,5 \cdot (c + t) - \frac{1,5 \cdot M_C}{0,5 \cdot (c + t)} = -0,11 \text{ kN/cm} \]
Querkraft und Biegemoment in der Steife:

\[Q = \frac{C \cdot (h - 2 \cdot t_g)}{2} = 338,33 \text{ kN} \]

\[M_E = \frac{C \cdot (h - 2 \cdot t_g)^2}{12} = 2503,63 \text{ kNcm} \]

Nachweis der Steife:

\[\sigma = \frac{M_E}{W} = 12,02 \text{ kN/cm}^2 \]

\[\sigma / \sigma_{Rd} = 0,551 \leq 1 \]

\[\tau_m = \frac{Q}{A} = 6,77 \text{ kN/cm}^2 \]

\[\tau_m / \tau_{Rd} = 0,537 \leq 1 \]

Anschlußnaht:

\[A_{w3} = a_3 \cdot (h_{St} - e) = 45,00 \text{ cm}^2 \]

\[W_{w3} = \frac{a_3 \cdot (h_{St} - e)^2}{6} = 187,50 \text{ cm}^3 \]

\[\sigma_{w3} = \frac{M_E}{W_{w3}} = 13,35 \text{ kN/cm}^2 \]

\[\tau_{w3} = \frac{Q}{A_{w3}} = 7,52 \text{ kN/cm}^2 \]

\[\sigma_{w3,v} = \sqrt{\sigma_{w3}^2 + \tau_{w3}^2} = 15,32 \text{ kN/cm}^2 \]

\[\sigma_{w3,v} / \sigma_{w,R,d} = 0,739 \leq 1 \]
Zweigelenkrahmen mit n-Pendelstützen

Eingabedaten:

System:
- Rahmenhöhe $h = 7,50 \, \text{m}$
- Rahmenbreite $b = 12,00 \, \text{m}$
- Normalkraft $N_1 = 100,00 \, \text{kN}$
- Normalkraft $N_2 = 150,00 \, \text{kN}$
- $P = P_1 \frac{h}{h_1} + P_2 \frac{h}{h_2} + ...$
- Normalkraft $P = 210,00 \, \text{kN}$

Stahlprofile:
- Stielprofil Typ1 = GEW("Profil/Profile"; Bez;) = HEB
- Nennhöhe $NH_1 = \text{GEW("Profil/Typ1;NH;";} = 240$
- Riegelprofil Typ2 = GEW("Profil/Profile"; Bez;) = IPE
- Nennhöhe $NH_2 = \text{GEW("Profil/Typ2;NH;";} = 300$

Berechnungsergebnisse:

Querschnittswerte:
- $I_S = \text{TAB("Profil/Typ1; Iy; NH=NH1") = 11260,00 cm}^4$
- $I_R = \text{TAB("Profil/Typ2; Iy; NH=NH2") = 8360,00 cm}^4$

Vorwerte:
- $c = \frac{I_S \cdot b}{I_R \cdot h} = 2,1550$
- $v = \frac{2}{2 + c} = 0,4813$
- $n_1 = \frac{P}{N_1} = 2,1000$
- $n_2 = \frac{N_2}{N_1} = 1,5000$

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Knicklänge / Knicklast:

\[
\eta_{Ki} = \frac{6 \cdot v}{\left(0.216 \cdot v^2 + 1\right) \cdot (1 + n_2) + n_1} = 0.6112
\]

\[
\beta_1 = \frac{\pi}{\sqrt{\eta_{Ki}}} = 4.0184
\]

\[
\beta_2 = \frac{\pi}{\sqrt{n_2 \cdot \eta_{Ki}}} = 3.2810
\]

\[
s_{k1} = \beta_1 \cdot h = 30.14 \text{ m}
\]

\[
s_{k2} = \beta_2 \cdot h = 24.61 \text{ m}
\]

\[
N_{Ki,1} = \pi^2 \cdot 2.1 \cdot \frac{l_s}{s_{k1}} = 256.90 \text{ kN}
\]

\[
N_{Ki,2} = \pi^2 \cdot 2.1 \cdot \frac{l_s}{s_{k2}} = 385.33 \text{ kN}
\]
Zweischrittiger Anschluss

Einwirkungen / Materialkennwerte:

- \(N_g = 134,95 \text{ kN} \)
- \(N_p = 65,21 \text{ kN} \)
- \(Z_d = 1,35 \cdot N_g + 1,50 \cdot N_p = 280,00 \text{ kN} \)

Stahl = \(\text{GEW(Material/DIN}; \text{Bez;} = \text{S275} \)

VB = \(\text{GEW(Verbindungen/Schr}; \text{VB;} = \text{SLS} \)

Schraube Schr = \(\text{GEW(Verbindungen/Schr}; \text{SG;} = \text{M 24} \)

FK = \(\text{GEW(Verbindungen/Schr}; \text{FK;} = \text{4.6} \)

Sicherheitsbeiwert \(\gamma_M = 1,10 \)

- \(R_{mN} = \text{TAB(Material/DIN}; \text{fuk}; \text{Bez=Stahl})/10 = 41,00 \text{ kN/cm}^2 \)
- \(R_e = \text{TAB(Material/DIN}; \text{fyk}; \text{Bez=Stahl})/10 = 27,50 \text{ kN/cm}^2 \)
- \(f_{u,b,k} = \text{TAB(Verbindungen/Schr}; \text{f}_{ubk}; \text{FK=FK})/10 = 40,00 \text{ kN/cm}^2 \)

Schrauben 4xM24, 4.6:

- \(d_{Sch} = \text{TAB(Verbindungen/Schr}; \text{d}; \text{SG=Schr}) = 24,0 \text{ mm} \)

Lochspiel \(\Delta d = 1,00 \text{ mm} \)

Lochdurchmesser \(d_L = d_{Sch} + \Delta d = 25,00 \text{ mm} \)

\(\alpha_a = \text{TAB(Verbindungen/Schr}; \alpha_a; \text{FK=FK}; \text{VB=VB}) = 0,60 \)

Blech Bl 20 / Knotenbleche 120x20:

- \(b = 120,00 \text{ mm} \)
- \(t_b = 20,00 \text{ mm} \)
- \(t_s = 20,00 \text{ mm} \)

\(t = \text{MIN}(2 \cdot t_b ; t_s) = 20,00 \text{ mm} \)

Bruttoquerschnitt \(A_{Br} = \frac{bt}{100} = 24,00 \text{ cm}^2 \)

Nettoquerschnitt \(A_{Net} = \frac{t \cdot (b - 2 \cdot d_L)}{100} = 14,00 \text{ cm}^2 \)

\(Z_{R,d} = \frac{A_{Net} \cdot R_{mN}}{1,25 \cdot \gamma_M} = 417,5 \text{ kN} \)

\(v = \frac{Z_d}{Z_{R,d}} = 0,671 \leq 1 \)
Schraubenabstände:

Untereinander:
\[
\text{min.} \, e = 2,2 \cdot d_L = 55,0 \text{ mm}
\]
\[
\text{max.} \, e = \text{MIN}(6,0 \cdot d_L; 12 \cdot t) = 150,0 \text{ mm}
\]

zum Rand:
\[
\text{min.} \, e_1 = 1,2 \cdot d_L = 30,0 \text{ mm}
\]
\[
\text{max.} \, e_1 = \text{MIN}(3,0 \cdot d_L; 6 \cdot t) = 75,0 \text{ mm}
\]
quers zum Rand:
\[
\text{gewählt } e = 55,0 \text{ mm}
\]
\[
\text{gewählt } e_3 = 60,0 \text{ mm}
\]
\[
\text{gewählt } e_1 = 30,0 \text{ mm}
\]
vorh. \, e_2 = \frac{(b-e_3)}{2} = 30,0 \text{ mm}

Nachweis gegen Abscheren:

\[
V_{a, R, d} = \pi \cdot \frac{(d_{\text{Sch}}/10)^2}{4} \cdot \alpha_a \cdot \frac{f_{u,b,k}}{\gamma_M} = 98,70 \text{ kN}
\]
\[
V_a = Z_d / 4 = 70,0 \text{ kN}
\]
\[
\nu = \frac{V_a}{V_{a, R, d}} = 0,709 < 1
\]

Lochleibung:

\[
e_1 / d_L = 1,2
\]
\[
e_2 / d_L = 1,2
\]
\[
e_3 / d_L = 2,4
\]
\[
e / d_L = 2,2
\]

\[
\alpha_L = \text{MIN}(\alpha_1 ; \alpha_2) = 0,676
\]
\[
V_{l, R, d} = t \cdot d_{\text{Sch}}/100 \cdot \alpha_L \cdot R_e / \gamma_M = 81,12 \text{ kN}
\]
\[
V_l = Z_d / 4 = 70,0 \text{ kN}
\]
\[
\nu = \frac{V_l}{V_{l, R, d}} = 0,863 < 1
\]

gewählt:

4xM24x65 (4.6)
Bl. 20
Fl. 120x20 - 240

Pdf-Übersicht: Rechenfähige Vorlagen für VCmaster
Kondensator:

Kondensatorfläche \(A = 0,10 \text{ m}^2 \)
Abstand \(d = 0,01 \text{ mm} \)
Dielektrikum Öl mit \(\varepsilon_r = 2,50 \)

\[
C = \varepsilon_r \times 0,008859 \times \frac{A}{d} = 0,22 \text{ myF}
\]

\[
dU_{ab_zu_dt} = 100,00 \text{ V/s}
\]

\[
i = C \times dU_{ab_zu_dt} \times 10^{-3} = 0,022 \text{ mA}
\]
Kondensatorenberechnung:

Kapazität \(C_1 = 18,00 \text{ myF} \)
Kapazität \(C_2 = 23,00 \text{ myF} \)

Parallelgeschaltet:
\[
C = C_1 + C_2 = 41,00 \text{ myF}
\]

Reihengeschaltet:
\[
C = \frac{C_1 \cdot C_2}{C_1 + C_2} = 10,10 \text{ myF}
\]

Spannung am Kondensator:
\(U = 200,00 \text{ V} \)

Gespeicherte Energie:
\[
W_c = \frac{C \cdot 10^{-6}}{2 \cdot U^2} = 0,2020 \text{ VAs}
\]
Kurzschlusstromberechnung:

Urspannung \(E = 12,0 \ \text{V} \)
Innenwiderstand der Spannungsquelle \(R_i = 1,0 \ \text{Ohm} \)
Belastungswiderstand \(R_{ab} = 10,0 \ \text{Ohm} \)

Kurzschlußstrom \(I_k = \frac{E}{R_i + R_{ab}} = 1,1 \ \text{A} \)

Arbeitspunkt:
\(I = \frac{E}{R_i} = 12,0 \ \text{A} \)
\(U_{ab} = I \times R_{ab} = 120,0 \ \text{V} \)
Stromteiler:

Spannung $U_{ab} = 110 \, V$
Widerstand $R_1 = 10 \, \Omega$
Widerstand $R_2 = 5 \, \Omega$

\[
I = \frac{U_{ab} \cdot (R_1 + R_2)}{R_1 \cdot R_2} = 33,0 \, A
\]

\[
I_1 = \frac{I \cdot R_2}{R_1 + R_2} = 11,0 \, A
\]

\[
I_2 = \frac{I \cdot R_1}{R_1 + R_2} = 22,0 \, A
\]
Widerstandsberechnung:

Material = GEW("E-Technik/Leit"; Bez;) = Kupfer rein

Leiterlänge \(l = 10,0 \) m
Leiterquerschnitt \(A = 1,5 \) mm\(^2\)
Temperatur \(t = 100,0 \) °C
Temperaturbeiwert \(\alpha = 0,004 \) 1/°C

Elektrische Leitfähigkeit
\(\kappa = \text{TAB("E-Technik/Leit"; \kappa; Bez=Material)} = 58,0 \text{ m/Ohm*mm}^2 \)

Berechnung des Widerstandes:
\[
R_{20} = \frac{l}{\kappa \cdot A} = 0,1149 \text{ mOhm}
\]
\[
R_t = R_{20} \cdot (1 + \alpha \cdot (t - 20)) = 0,1517 \text{ Ohm}
\]
Flüssigkeitsausströmen aus einem Behälter:

Auswahl des Fluids:
Auswahl Fluid = GEW("Material/Fluid";Bez;) = Wasser 20 °C

Eingabewerte:
Höhe der Flüssigkeitsäule h = 1,00 m
Innendruck (absolut) $p_i = 40,00$ bar
Umgebungsdruck (absolut) $p_u = 1,00$ bar

Stoffwerte:
Dichte:
$\rho = \text{TAB("Material/Fluid"; p; Bez=Fluid)} = 999,7 \text{ kg/m}^3$

Berechnung:
Ausströmgeschwindigkeit:
\[
w = \frac{\sqrt{2 \cdot 9,81 \cdot h + \frac{2 \cdot (p_i - p_u) \cdot 10^5}{\rho}}}{\text{Wenn}(p_i > p_u)}
\]
\[
w = \frac{\sqrt{2 \cdot 9,81 \cdot 1,00 + \frac{2 \cdot (40,00 - 1,00) \cdot 10^5}{999,7}}}{\text{Wenn}(40,00 > 1,00)} = 88,44 \text{ bar}
\]
Gasausströmen aus einem Behälter:

Auswahl des Gas:
Auswahl Gas = GEW("Material/Gas":Bez;) = Ar

Eingabewerte:
Innentemperatur $t_i = 100,00 \, ^\circ\text{C}$
Innendruck (absolut) $p_i = 1,20 \, \text{bar}$
Umgebungsdruck (absolut) $p_u = 1,10 \, \text{bar}$

Stoffwerte:
Gaskonstante:
$R = \text{TAB("Material/Gas": R; Bez=Gas)} = 208,10 \, \text{J/(kg*K)}$
Isentropenexponent:
$\kappa = \text{TAB("Material/Gas": \kappa; Bez=Gas)} = 1,6600$

Berechnung:
Temperatur des ausströmenden Gases:
$t = \text{WENN}(p_i>p_u; (273,15 + t_i) * \left(\frac{p_u}{p_i}\right)^\kappa - 273,15) = 87,31 \, ^\circ\text{C}$
Ausströmgeschwindigkeit:
$w = \sqrt{2 * \kappa * R * (t_i - t)} = 115,26 \, \text{m/s}$
Schallgeschwindigkeit ausströmendes Gas:
$v_s = \sqrt{\kappa * R * (273,15 + t)} = 352,87 \, \text{m/s}$
Stationäre Strömung:
Gültigkeitsbereich 0 - 100 °C

Fluidtemperatur 1 \(T_1 = \) 95 °C
Fluidtemperatur 2 \(T_2 = \) 50 °C

Massentrom 1 \(m_1 = \) 0,0000 kg/s
Geschwindigkeit 1 \(v_1 = \) 0,0000 m/s
Volumenstrom 1 \(V_1 = \) 0,5000 m³/s
Durchmesser \(d_1 = \) 1,0000 m

Geschwindigkeit 2 \(v_2 = \) 0,0000 m/s
Durchmesser \(d_2 = \) 0,5000 m

Berechnung:
\[
\rho_1 = \text{TAB}(\text{"Material/Wasser"}; \rho; t=T_1) = 961,70000 \text{ kg/m}^2
\]
\[
\rho_2 = \text{TAB}(\text{"Material/Wasser"}; \rho; t=T_2) = 988,10000 \text{ kg/m}^2
\]

Massenstrom 1:
\[
m = \text{WENN}(m_1=0; \text{WENN}(V_1 \neq 0; \rho_1 \cdot V_1; v_1 \cdot d_1^2 \cdot \pi / 4 \cdot \rho_1; m_1)) = 480,8500 \text{ kg/s}
\]

Punkt 1:
Volumenstrom:
\[
V_1 = m / \rho_1 = 0,5000 \text{ m}^3/\text{s}
\]
Geschwindigkeit:
\[
v_1 = \text{WENN}(v_1 \neq 0; V_1 \cdot \frac{4}{\pi \cdot d_1^2}) = 0,6366 \text{ m/s}
\]
Querschnittsfläche:
\[
A_1 = V_1 / v_1 = 0,7854 \text{ m}^2
\]
Durchmesser:
\[
d_1 = \sqrt{\frac{4 \cdot A_1}{\pi}} = 1,0000 \text{ m}
\]

Punkt 2:
Volumenstrom:
\[
V_2 = m / \rho_2 = 0,4866 \text{ m}^3/\text{s}
\]
Geschwindigkeit:
\[
v_2 = \text{WENN}(d_2 \neq 0; \frac{V_2 \cdot 4}{\pi \cdot d_2^2}; v_2) = 2,4782 \text{ m/s}
\]
Querschnittsfläche:
\[
A_2 = V_2 / v_2 = 0,1964 \text{ m}^2
\]
Durchmesser:
\[
d_2 = \text{WENN}(d_2 \neq 0; d_2; \sqrt{\frac{4 \cdot A_2}{\pi}}) = 0,5000 \text{ m}
\]
Stationäre Strömung:

Auszwahl Gas = GEW("Material/Gas"; Bez;) = Ar

Fluidtemperatur 1 $T_1 = 20 \, ^\circ C$
Fluidtemperatur 2 $T_2 = 80 \, ^\circ C$

Fluiddruck 1 $p_1 = 2 \, \text{bar}$
Fluiddruck 2 $p_2 = 5 \, \text{bar}$

Massenstrom 1 $m_1 = 0,0000 \, \text{kg/s}$

Geschwindigkeit 1 $v_1 = 0,0000 \, \text{m/s}$

Volumenstrom 1 $V_1 = 0,5000 \, \text{m}^3/\text{s}$

Durchmesser $d_1 = 1,0000 \, \text{m}$

Geschwindigkeit 2 $v_2 = 0,0000 \, \text{m/s}$

Durchmesser $d_2 = 0,5000 \, \text{m}$

Berechnung:

\[i = \text{TAB("Material/Gas"; i; Bez=Gas)} = 2 \]
\[\rho_n = \text{TAB("Material/Gas"; \rho_n; Bez=Gas)} = 1,78400 \, \text{kg/m}^2 \]
\[\text{Dichte } \rho_1 = \frac{\rho_n \cdot p_1}{1,01325 + \frac{273,15}{273,15 + T_1}} = 3,281 \, \text{kg/m}^2 \]
\[\text{Dichte } \rho_2 = \frac{\rho_n \cdot p_2}{1,01325 + \frac{273,15}{273,15 + T_2}} = 6,809 \, \text{kg/m}^2 \]

Massenstrom 1:
\[m = \text{WENN}(m_1=0; \text{WENN}(V_1 \neq 0; \rho_1 \cdot V_1; v_1 \cdot d_1^2 \cdot \frac{4}{\pi} \cdot \rho_1); m_1) = 1,6405 \, \text{kg/s} \]

Punkt 1:

Volumenstrom:
\[V_1 = \frac{m}{\rho_1} = 0,5000 \, \text{m}^3/\text{s} \]

Geschwindigkeit:
\[v_1 = \text{WENN}(v_1 \neq 0; v_1; \frac{4}{\pi} \cdot \frac{A_1}{d_1^2}) = 0,6366 \, \text{m/s} \]

Querschnittsfläche:
\[A_1 = \frac{V_1}{v_1} = 0,7854 \, \text{m}^2 \]

Durchmesser:
\[d_1 = \sqrt{\frac{4 \cdot A_1}{\pi}} = 1,0000 \, \text{m} \]
Punkt 2:

Volumenstrom:

\[V_2 = \frac{m}{\rho_2} = 0,2409 \text{ m}^3/\text{s} \]

Geschwindigkeit:

\[v_2 = \text{WENN}(d_2 \neq 0; V_2 \cdot \frac{4}{\pi \cdot d_2}; v_2) = 1,2269 \text{ m/s} \]

Querschnittsfläche:

\[A_2 = \frac{V_2}{v_2} = 0,1963 \text{ m}^2 \]

Durchmesser:

\[d_2 = \text{WENN}(d_2 \neq 0; d_2; \sqrt[4]{\frac{4 \cdot A_2}{\pi}}) = 0,5000 \text{ m} \]
Entfernungsschalldruck:

Schalldruckpegel \(L_p = 85,0 \text{ dB} \)
Entfernung \(r = 40,0 \text{ m} \)

\[
L_r = L_p - 20 \times \log(r) - 8 = 45,0 \text{ dB}
\]
Ermittlung des Gesamtschalldrucks

mittlerer Maschinenabstand $a = 4,0 \, \text{m}$
nicht ausgekleideter Raum $\alpha = 0,1$
Anzahl der Maschinen $n = 4,0$

Schalldruckpegel $L_1 = 70,0 \, \text{dB}$
Schalldruckpegel $L_2 = 70,0 \, \text{dB}$
Schalldruckpegel $L_3 = 66,0 \, \text{dB}$
Schalldruckpegel $L_4 = 60,0 \, \text{dB}$

dif_1 = $L_1 - L_2 = 0,0 \, \text{dB}$
dif_2 = $L_3 - L_4 = 6,0 \, \text{dB}$

$\Delta L_{1,2} = \text{TAB}(\text{"Akustik/logAdd"}; \Delta L; \text{dif}=\text{dif}_1) = 3,0 \, \text{dB}$
$\Delta L_{3,4} = \text{TAB}(\text{"Akustik/logAdd"}; \Delta L; \text{dif}=\text{dif}_2) = 1,0 \, \text{dB}$
dif_3 = $\text{ABS}(\text{dif}_1 - \text{dif}_2) = 6,0 \, \text{dB}$

$\Delta L_{1,2,3,4} = \text{TAB}(\text{"Akustik/logAdd"}; \Delta L; \text{dif}=\text{dif}_3) = 1,0 \, \text{dB}$

$r_1 = \frac{a \cdot \sqrt{2}}{2} = 2,8 \, \text{m}$

$L_{ges} = \text{MAX}(L_1; L_2; L_3; L_4) + 11,2 \cdot \frac{r_1}{a} \cdot \sqrt{1 - \alpha} \cdot \log_{10}(n) = 74,5 \, \text{dB}$