Preface

Content
Interactive design aids for timber elements in accordance to BS EN 1995

Guidelines of use
After installing a free trial or demo version the interactive templates will be available free of charge. The only requirement is a registration at www.VCmaster.com.

The examples provided have been created using VCmaster. All annotated and illustrated design aids can be used as a basis to create own templates. In order to do this a full version of VCmaster is necessary.

All templates are linked to various databases by TAB()- or SEL() functions. For instructional purposes these links are displayed in this document, but can also be hidden when printing.

What is VCmaster?
VCmaster is a software application for technical documentation specifically designed for engineers. The unique software concept integrates all structural design and CAD software. Universal interfaces guarantee data transfer, so that the output of all programs can be transposed.

Beside its functions for documentation, VCmaster offers an intuitive concept enabling engineers to carry out calculations. The input of mathematic formulas can be executed in natural notation directly in the document itself. The software significantly supports the reuse of structural calculations and documents. VCmaster simplifies modifications and adjustments and automates standard tasks. Collaboration with work-groups or with other offices and clients is uncomplicated as well. As a result, processing time and costs can be considerably reduced.

System Requirements
VCmaster 2016 or newer

Development and Copyrights
Developed in Germany
VCmaster is a registered trademark
© Veit Christoph GmbH 1995-2016
www.VCmaster.com
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preface</td>
<td>1</td>
</tr>
<tr>
<td>Contents</td>
<td>2</td>
</tr>
<tr>
<td>Chapter 1: Beams</td>
<td>3</td>
</tr>
<tr>
<td>Check of a timber beam at the bending ULS</td>
<td>3</td>
</tr>
<tr>
<td>Check of a beam for deflection SLS</td>
<td>4</td>
</tr>
<tr>
<td>Check of a timber beam at the bending ULS</td>
<td>6</td>
</tr>
<tr>
<td>Check of a residential floor against the vibration criterion</td>
<td>7</td>
</tr>
<tr>
<td>Design of a timber joist at ULS and SLS</td>
<td>8</td>
</tr>
<tr>
<td>Chapter 2: Columns</td>
<td>11</td>
</tr>
<tr>
<td>Axial load capacity of a timber post</td>
<td>11</td>
</tr>
<tr>
<td>Axial load capacity of a timber post</td>
<td>12</td>
</tr>
<tr>
<td>Chapter 3: Supports</td>
<td>14</td>
</tr>
<tr>
<td>Compression perpendicular to the grain at end bearing</td>
<td>14</td>
</tr>
<tr>
<td>Compression perpendicular to the grain at internal bearing</td>
<td>15</td>
</tr>
<tr>
<td>Shear capacity at a support</td>
<td>16</td>
</tr>
<tr>
<td>Shear capacity at a support notched at the bottom</td>
<td>17</td>
</tr>
<tr>
<td>Shear capacity at a support notched at the top</td>
<td>18</td>
</tr>
</tbody>
</table>
Chapter 1: Beams

Check of a timber beam at the bending ULS

Data given:
Beam span $L = 4.00\,\text{m}$
Width $b = 100.0\,\text{mm}$
Depth $h = 150.0\,\text{mm}$

Loading
Dead load $G_k = 2.00\,\text{kN}$
Imposed load $Q_k = 3.50\,\text{kN}$
Ultimate load $F_d = 1.35 \times G_k + 1.50 \times Q_k = 7.95\,\text{kN}$
Moment $M_d = \frac{F_d \times L}{8} = \frac{7.95 \times 4.00}{8} = 3.98\,\text{kNm}$

Material properties:
Timber $T = \text{SEL(}EC5_BS/classes\text{}; type; \text{)} = \text{Softwood}$
Strength class $C_T = \text{C24}$
Service class $C_S = 2$
Duration class $C_D = \text{medium-term}$
Partial factor $\gamma_M = 1.30$

$f_{m,k} = 24.00\,\text{N/mm}^2$
$k_{\text{mod}} = 0.80$

Ultimate moment of resistance
Depth factor $k_h = \text{MAX}(1.0; \text{MIN}(150/h)^{0.2}; 1.3) = 1.00$
Bending strength $f_{m,d} = k_{\text{mod}} \times k_h \times f_{m,k} = 0.80 \times 1.00 \times \frac{24.00}{1.30} = 14.77\,\text{N/mm}^2$
Modulus $W_{yy} = \frac{b \times h^2}{6} = \frac{100.0 \times 150.0^2}{6} = 375000.0\,\text{mm}^3$
$M_{ult} = f_{m,d} \times W_{yy} = 14770 \times 0.000375 = 5.54\,\text{kNm}$
$\frac{M_d}{M_{ult}} = \frac{3.98}{5.54} = 0.72 \leq 1$
Check of a beam for deflection SLS

Data given:
Span L = 4.00 m
Width b = 100.0 mm
Depth h = 150.0 mm

Loading
Dead load $G_k =$ 2.0 kN
Imposed load $Q_k =$ 3.5 kN

Material and stiffness properties
Timber $T =$ SEL("EC5_BS/classes"; type;) = Softwood
Strength class $C_T =$ C24
E = 11000.00 N/mm²

\[
A = b \times h = 15.00 \times 10^3 \text{ mm}^2
\]

\[
l = \frac{b \times h^3}{12} = 28.13 \times 10^6 \text{ mm}^4
\]

Instantaneous Deflection
For dead load:
\[
M = \frac{G_k \times L}{8} = 1.00 \text{ kNm}
\]
\[
w_{\text{inst,G}} = \frac{5 \times G_k \times L^3}{384 \times E \times l} + \frac{19.2 \times M \times 10^6}{E \times A} = 5.50 \text{ mm}
\]

For imposed load:
\[
M = \frac{Q_k \times L}{8} = 1.75 \text{ kNm}
\]
\[
w_{\text{inst,Q}} = \frac{5 \times Q_k \times L^3}{384 \times E \times l} + \frac{19.2 \times M \times 10^6}{E \times A} = 9.63 \text{ mm}
\]

Total instantaneous deflection:
\[
w_{\text{inst}} = w_{\text{inst,G}} + w_{\text{inst,Q}} = 5.50 + 9.63 = 15.13 \text{ mm}
\]
Final deflection

Category	= B: office areas
ψ₂	= 0.30
Service class Cₛ	= 2
kₜₚ	= 0.80

\[w_{\text{fin,G}} = w_{\text{inst,G}} \times (1 + k_{\text{def}}) = 5.50 \times (1 + 0.80) \quad = 9.90 \text{ mm} \]

\[w_{\text{fin,Q}} = w_{\text{inst,Q}} \times (1 + \psi_2 \times k_{\text{def}}) = 9.63 \times (1 + 0.30 \times 0.80) \quad = 11.94 \text{ mm} \]

Total final deflection

\[w_{\text{fin}} = w_{\text{fin,G}} + w_{\text{fin,Q}} = 9.90 + 11.94 \quad = 21.8 \text{ mm} \]

\[w_{\text{max}} = \frac{L}{150} = \frac{4000}{150} \quad = 26.7 \text{ mm} \]

\[\frac{w_{\text{fin}}}{w_{\text{max}}} = \frac{21.8}{26.7} = 0.82 \leq 1 \]
Check of a timber beam at the bending ULS

Data given:
- Beam span $L = 4.00$ m
- Width $b = 100.0$ mm
- Depth $h = 150.0$ mm

Loading
- Dead load $G_k = 2.00$ kN
- Imposed load $Q_k = 3.50$ kN

Ultimate load $F_d = 1.35 \times G_k + 1.50 \times Q_k = 7.95$ kN

Moment $M_d = \frac{F_d \times L}{8} = \frac{7.95 \times 4.00}{8} = 3.98$ kNm

Material properties:
- Timber $T = $ Softwood C_{T}
- Strength class $C_T = $ C24
- Service class $C_S = $ 1
- Duration class $C_D = $ short-term

Partial factor $\gamma_M = 1.30$

- $f_{m,k} = 24.00$ N/mm²
- $k_{mod} = 0.90$

Maximum depth-to-breadth ratio to avoid lateral torsional buckling (LTB)
- Limiting height/breadth ratio = 5:1
- Height/breadth ratio = $h/b = 1.5 : 1$
- Maximum height = $b \times \text{factor} = 500.0 > h$

The beam is not subject to lateral torsional buckling

Ultimate moment of resistance
- Depth factor $k_h = \text{MAX}(1.0 \text{; MIN}(150/h)^{0.2} ; 1.3)) = 1.00$
- Bending strength $f_{m,d} = k_{mod} \times k_h \times f_{m,k} \times \gamma_M = 0.90 \times 1.00 \times \frac{24.00}{1.30} = 16.62$ N/mm²
- Modulus $W_{yy} = \frac{b \times h^2}{6} = \frac{100.0 \times 150.0^2}{6} = 375000.0$ mm³
- $M_{ult} = f_{m,d} \times W_{yy} = 1662 \times 0.000375 = 6.23$ kNm
Check of a residential floor against the vibration criterion

Data given:
Span \(L = 4.00 \text{ m} \)
Joist spacing \(e = 400.0 \text{ mm} \)
Width \(b = 100.0 \text{ mm} \)
Depth \(h = 150.0 \text{ mm} \)

Loading
Timber \(T \)
Strength class \(C_T \)
\(\bar{\rho}_{\text{mean}} \)

Mass of joist:
\(b \cdot h \cdot \bar{\rho}_{\text{mean}} / e = 0.1 \cdot 0.15 \cdot 420.00 / 0.4 = 15.8 \text{ kg/m}^2 \)
Chipboard:
15.0 kg/m²
Plasterboard:
20.0 kg/m²

Total mass on floor \(m = 50.8 \text{ kg/m}^2 \)

EI value of one metre of floor
On joist \(I_1: \)
\(b \cdot h^3 / 12 = \frac{100.0 \cdot 150.0^3}{12} = 28.1 \cdot 10^6 \text{ mm}^4 \)

I value of metre with \(I = \)
\(\frac{I_1}{e} = \frac{28100000}{0.4} = 70.3 \cdot 10^6 \text{ mm}^4 \)

Modulus of elasticity \(E \)
\(E = 11000.0 \text{ N/mm}^2 \)

\(EI = I \cdot E / 10^6 = 0.77 \cdot 10^6 \text{Nm}^2/\text{m} \)

First fundamental frequency \(f_1 \)
\(f_1 = \frac{\pi}{2} \cdot 2 \cdot L \sqrt{\frac{EI}{m}} = \frac{3.14159}{2 \cdot 4.00^2 \cdot \sqrt{770000 \cdot 50.8}} = 12.09 \text{ Hz} \)

\(f_1 \) is more than 8 Hz, so a special investigation is not required

Deflection under 1-kN point load
\(w = \frac{399 \cdot L^3}{48 \cdot E \cdot I_1} = \frac{399 \cdot 4000^3}{48 \cdot 11000.0 \cdot 28100000} = 1.72 \text{ mm} \)

\(w_{\text{lim}} = \frac{16500}{L_{1.1}} ; 1.80 \)

\(w \)
\(w_{\text{lim}} \)
\(1.72 \)
\(1.80 \)

\(0.96 \leq 1 \)
Design of a timber joist at ULS and SLS

Data given:
- Span L = 4.00 m
- Joist spacing e = 600.0 mm
- Width b = 100.0 mm
- Depth h = 200.0 mm

Load on one joist
- Asphalt: \(0.45 \times e \times L = 0.45 \times 0.6 \times 4.00\) = 1.08 kN
- Insulation: \(0.10 \times e \times L = 0.10 \times 0.6 \times 4.00\) = 0.24 kN
- Roof decking boards: \(0.30 \times e \times L = 0.30 \times 0.6 \times 4.00\) = 0.72 kN
- Timber firrings: \(0.01 \times e \times L = 0.01 \times 0.6 \times 4.00\) = 0.02 kN
- Suspended tile ceiling: \(0.15 \times e \times L = 0.15 \times 0.6 \times 4.00\) = 0.36 kN
- Assumed self weight: \(0.10 \times e \times L = 0.10 \times 0.6 \times 4.00\) = 0.24 kN

\(G_k = 2.66\) kN

Snow load \(Q_k\):
\(0.60 \times e \times L = 0.60 \times 0.6 \times 4.00\) = 1.44 kN

\(F_{SLS} = G_k + Q_k = 2.66 + 1.44\) = 4.10 kN

\(F_{ULS} = 1.35 \times G_k + 1.50 \times Q_k = 1.35 \times 2.66 + 1.50 \times 1.44\) = 5.75 kN

Timber properties and parameters
- Timber T = Softwood
- Strength class \(C_T\) = C24
- Service class \(C_S\) = 1
- Duration class \(C_D\) = short-term
- Partial factor \(\gamma_M\) = 1.30

- \(f_{m,k}\) = 24.00 N/mm²
- \(f_{c,90,k}\) = 2.50 N/mm²
- \(f_{v,k}\) = 2.50 N/mm²
- \(E\) = 11000.00 N/mm²

- \(k_{sys}\) = 1.10
- \(k_{mod}\) = 0.90
- \(k_h = \text{MAX}(1.0; \text{MIN}(150/h^{0.2}; 1.3))\) = 1.00
- \(k_{def}\) = 0.60
Bending ULS

\[M_d = \frac{F_{ULS} \times L}{8} = \frac{5.75 \times 4.00}{8} = 2.88 \text{kNm} \]

Bending strength

\[f_{m,d} = \frac{k_{sys} \times k_{mod} \times k_h \times f_{m,k}}{\gamma_M} = \frac{1.10 \times 0.90 \times 1.00 \times 24.00}{1.30} = 18.28 \text{N/mm}^2 \]

Modulus

\[W_{yy} = \frac{b \times h^2}{6} = \frac{100.0 \times 200.0^2}{6} = 666666.7 \text{mm}^3 \]

Ultimate moment

\[M_{ult} = f_{m,d} \times W_{yy} = 18280 \times 0.0006666667 = 12.19 \text{kNm} \]

\[\frac{M_d}{M_{ult}} = \frac{2.88}{12.19} = 0.24 \leq 1 \]

Maximum depth-to-breadth ratio to avoid lateral torsional buckling (LTB)

Limiting height/breadth ratio = 5:1
Height/breadth ratio = h/b = 2.0 :1
Maximum height = b \times factor = 500.0 > h

The beam is not subject to lateral torsional buckling

Shear ULS

\[\tau_d = \frac{0.43}{0.88} = 0.49 \leq 1 \]
Bearing ULS

\[
\sigma_{c,90,d} = \frac{V}{b \times l} = \frac{2880}{100.0 \times 100.0} = 0.29 \text{ N/mm}^2
\]

\[
k_{c,90} = \text{MAX}(1; \text{MIN}(\frac{2.38 \times \frac{l}{250}}{1 + \frac{h}{12 \times l}}; 4)) = 2.31
\]

\[
f_{c,90,d} = \frac{k_{c,90} \times k_{sys} \times k_{mod} \times f_{c,90,k}}{\gamma_M} = \frac{2.31 \times 1.10 \times 0.90 \times 2.50}{1.30} = 4.40 \text{ N/mm}^2
\]

\[
\frac{\sigma_{c,90,d}}{f_{c,90,d}} = \frac{0.29}{4.40} = 0.07 \leq 1
\]

Deflection SLS

\[
E = 11000.00 \text{ N/mm}^2
\]

\[
A = b \times h = 20.00 \times 10^3 \text{ mm}^2
\]

\[
l = \frac{b \times h^3}{12} = 66.67 \times 10^6 \text{ mm}^4
\]

Instantaneous deflection for dead load:

\[
M = \frac{G_k \times L}{8}
\]

\[
w_{\text{inst},G} = \frac{5 \times G_k \times L^3}{384 \times E \times I} + \frac{19.2 \times M \times 10^6}{E \times A} = 3.14 \text{ mm}
\]

Instantaneous deflection for imposed load:

\[
M = \frac{Q_k \times L}{8}
\]

\[
w_{\text{inst},Q} = \frac{5 \times Q_k \times L^3}{384 \times E \times I} + \frac{19.2 \times M \times 10^6}{E \times A} = 1.70 \text{ mm}
\]

Total instantaneous deflection:

\[
w_{\text{inst}} = w_{\text{inst},G} + w_{\text{inst},Q} = 3.14 + 1.70 = 4.84 \text{ mm}
\]

Final deflection

Category = Snow

\[
\psi_2 = 0.00
\]

\[
k_{\text{def}} = 0.60
\]

\[
w_{\text{fin},G} = w_{\text{inst},G} \times (1 + k_{\text{def}}) = 3.14 \times (1 + 0.60) = 5.02 \text{ mm}
\]

\[
w_{\text{fin},Q} = w_{\text{inst},Q} \times (1 + \psi_2 \times k_{\text{def}}) = 1.70 \times (1 + 0.00 \times 0.60) = 1.70 \text{ mm}
\]

\[
w_{\text{fin}} = w_{\text{fin},G} + w_{\text{fin},Q} = 5.02 + 1.70 = 6.7 \text{ mm}
\]

\[
w_{\text{max}} = \frac{L}{150} = \frac{4000}{150} = 26.7 \text{ mm}
\]

\[
\frac{w_{\text{fin}}}{w_{\text{max}}} = \frac{6.7}{26.7} = 0.25 \leq 1
\]
Chapter 2: Columns

Axial load capacity of a timber post

\[N_{Ed} \]

\[L \]

\[h_y \]

\[h_z \]

Data given

Clear height \(L = 3.50 \) m
Depth \(h_z = 100.0 \) mm
Depth \(h_y = 150.0 \) mm

Timber properties and parameters

- Timber \(T = \) SEL("EC5_BS/classes"; type;) = Softwood
- Strength class \(C_T = \) C24
- Service class \(C_S = 2\)
- Duration class \(C_D = \) medium-term

- \(E_{0,0.05} = 7400.00 \) N/mm²
- \(f_{c,0,k} = 21.00 \) N/mm²
- \(k_{mod} = 0.80\)

Design compressive strength of timber:

\[f_{c,0,d} = k_{mod} \frac{f_{c,0,k}}{?M} = 0.80 \times 21.00 / 1.30 = 12.92 \text{ N/mm}^2 \]

Calculations for buckling

- Depth \(h = \text{MIN}(h_y; h_z) = 100.00 \text{ mm}\)
- Radius of gyration \(i = \frac{h}{\sqrt{12}} = 28.87 \text{ mm}\)
- Slenderness ratio \(\lambda = \frac{L}{i} = \frac{3500}{28.87} = 121.23 \)

- \(\lambda_{rel} = \frac{\lambda}{\pi} \sqrt{\frac{f_{c,0,k}}{E_{0,0.05}}} = \frac{121.23}{3.14159} \times \frac{21.00}{7400.00} = 2.06 \)
- \(\beta_c = 0.20\)
- \(k = 0.5 \times (1 + \beta_c \times (\lambda_{rel}^{-0.3} + \lambda_{rel}^{-2})) = 2.80\)
- \(k_c = \frac{1}{k + \sqrt{k^2 - \lambda_{rel}^2}} = \frac{1}{2.80 + \sqrt{2.80^2 - 2.06^2}} = 0.213\)

Ultimate axial load capacity

\[k_{c,fc,0,d} = k_c \times f_{c,0,d} = 0.213 \times 12.92 = 2.75 \text{ N/mm}^2 \]

\[N_{Ed,max} = k_{c,fc,0,d} \times h_y \times h_z / 10^3 = 2.75 \times 150.0 \times 100.0 / 10^3 = 41.25 \text{ kN} \]
Axial load capacity of a timber post

Data given

Clear height $L = 3.00 \text{ m}$
Depth $h_y = 150.00 \text{ mm}$
Eccentricity $e_y = 50.00 \text{ mm}$
Depth $h_z = 100.00 \text{ mm}$
Eccentricity $e_z = 0.00 \text{ mm}$

Loading

Vertical load $N_{Ed} = 40.00 \text{ kN}$
Bending Moment $M_z = N_{Ed} \cdot e_z = 40.00 \cdot 0.00 = 0.00 \text{ kNm}$
Bending Moment $M_y = N_{Ed} \cdot e_y = 40.00 \cdot 0.05 = 2.00 \text{ kNm}$

Timber properties and parameters

Timber T = Softwood
Strength class C_T = C24
Service class C_S = 2
Duration class C_D = medium-term

$E_{0,0,05} = 7400.00 \text{ N/mm}^2$
Partial factor $\gamma_M =$ 1.3

$f_{m,k} = 24.00 \text{ N/mm}^2$
$f_{c,0,k} = 21.00 \text{ N/mm}^2$
$k_{mod} = 0.80$

Design compressive strength of timber:
$f_{c,0,d} = \frac{k_{mod} \cdot f_{c,0,k}}{\gamma_M} = \frac{0.80 \cdot 21.00}{1.30} = 12.92 \text{ N/mm}^2$

Design bending strength of timber:
Depth factor $k_h =$ MAX(1.0 ; MIN($(150/h_y)^{0.2} ; 1.3)$) = 1.000
$f_{m,y,d} = \frac{k_{mod} \cdot k_h \cdot f_{m,k}}{\gamma_M} = \frac{0.80 \cdot 1.000 \cdot 24.00}{1.30} = 14.77 \text{ N/mm}^2$

Depth factor $k_h =$ MAX(1.0 ; MIN($(150/h_z)^{0.2} ; 1.3)$) = 1.084
$f_{m,z,d} = \frac{k_{mod} \cdot k_h \cdot f_{m,k}}{\gamma_M} = \frac{0.80 \cdot 1.084 \cdot 24.00}{1.30} = 16.01 \text{ N/mm}^2$
Design bending and compressive stresses

Design compressive stress $\sigma_{c,0,d} = \frac{N_{Ed}}{h_y \cdot h_z} = \frac{40000}{150.0 \cdot 100.0} = 2.67$ N/mm²

Elastic section modulus $W_{yy} = \frac{h_z \cdot h_y}{6} = \frac{100.0 \cdot 150.0}{6} = 375.00 \cdot 10^3$ mm³

Design bending stress $\sigma_{m,y,d} = \frac{M_y}{W_{yy}} = \frac{200000}{375000} = 5.33$ N/mm²

Elastic section modulus $W_{zz} = \frac{h_z \cdot h_y}{6} = \frac{100.0^2 \cdot 150.0}{6} = 250.00 \cdot 10^3$ mm³

Design bending stress $\sigma_{m,z,d} = \frac{M_z}{W_{zz}} = \frac{0.00}{250000} = 0.00$ N/mm²

Calculations for buckling about z-z axis

Radius of gyration $i = \frac{h_z}{\sqrt{12}} = \frac{100.0}{\sqrt{12}} = 28.87$ mm

Slenderness ratio $\lambda = \frac{L}{i} = \frac{3000}{28.87} = 103.91$

$\lambda_{rel} = \frac{\lambda \cdot f_{c,0,k}}{\pi \cdot E_{0,0.05}} = \frac{103.91 \cdot 21.00}{3.14159 \cdot 7400.00} = 1.76$

$\beta_c = \text{IF(T ="Glulam" ; 0.1 ; 0.2)} = 0.20$

$k = 0.5 \cdot (1 + \beta_c \cdot (\lambda_{rel} - 0.3) + \lambda_{rel}^2) = 2.19$

$k_c = \frac{k + \sqrt{k^2 - \lambda_{rel}^2}}{1} = \frac{2.19 + \sqrt{2.19^2 - 1.76^2}}{1} = 0.286$

$\sigma_{c,0,d} + 0.7 \cdot \sigma_{m,y,d} + \sigma_{m,z,d} = \frac{2.67}{0.286 \cdot 12.92} + 0.7 \cdot 14.77 + 0.00 = 0.98 \leq 1$

Calculations for buckling about y-y axis

Radius of gyration $i = \frac{h_y}{\sqrt{12}} = \frac{150.0}{\sqrt{12}} = 43.30$ mm

Slenderness ratio $\lambda = \frac{L}{i} = \frac{3000}{43.30} = 69.28$

$\lambda_{rel} = \frac{\lambda \cdot f_{c,0,k}}{\pi \cdot E_{0,0.05}} = \frac{69.28 \cdot 21.00}{3.14159 \cdot 7400.00} = 1.17$

$k = 0.5 \cdot (1 + \beta_c \cdot (\lambda_{rel} - 0.3) + \lambda_{rel}^2) = 1.27$

$k_c = \frac{k + \sqrt{k^2 - \lambda_{rel}^2}}{1} = \frac{1.27 + \sqrt{1.27^2 - 1.17^2}}{1} = 0.567$

$\sigma_{c,0,d} + 0.7 \cdot \sigma_{m,y,d} + \sigma_{m,z,d} = \frac{2.67}{0.567 \cdot 12.92} + 0.7 \cdot 14.77 + 0.00 = 0.73 \leq 1$
Chapter 3: Supports

Compression perpendicular to the grain at end bearing

Data given
Width b = 100.0 mm
Depth h = 150.0 mm
Support l = 100.0 mm

Material properties:
Timber T = Softwood
Strength class C_T = C24
Bearing strength f_{c,90,k} = 2.50 N/mm²
Service class C_S = 2
Duration class C_D = medium-term
Partial factor \(\gamma_M \) = 1.30

\[f_{m,k} = 24.00 \text{ N/mm}^2 \]
\[k_{\text{mod}} = 0.80 \]
\[f_{c,90,d} = k_{\text{mod}} \frac{f_{c,90,k}}{\gamma_M} = 0.80 \times \frac{2.50}{1.30} = 1.54 \text{ N/mm}^2 \]

At end bearing
\[h = 150.0 \]
\[\frac{3}{3} = 50.0 > a \]
\[k_{c,90} = \text{MAX}(1; \text{MIN}(\frac{2.38}{250} \times (1 + \frac{h}{12 \times l}; 4)) = 2.23 \]
\[\sigma_{c,90,d} = k_{c,90} f_{c,90,d} = 2.23 \times 1.54 = 3.43 \text{ N/mm}^2 \]

Ultimate capacity of bearing at ULS
\[F_{\text{MAX}} = \sigma_{c,90,d} b l = 0.343 \times 10.0 \times 10.0 = 34.3 \text{ kN} \]
Compression perpendicular to the grain at internal bearing

![Diagram of compression perpendicular to the grain at internal bearing]

Data given
- Width \(b = 100.0 \text{ mm} \)
- Depth \(h = 200.0 \text{ mm} \)
- Support \(l = 100.0 \text{ mm} \)

Material properties:
- Timber \(T \)
 - Strength class \(C_T \) = Softwood
 - Bearing strength \(f_{c,90,k} \) = 2.50 N/mm²
- Service class \(C_S \) = 2
- Duration class \(C_D \) = medium-term
- Partial factor \(\gamma_M \) = 1.30
- Modulus of elasticity \(f_{m,k} \) = 24.00 N/mm²
- Modulus of elasticity \(k_{mod} \) = 0.80
- Partial factor \(\gamma_M \) = 1.30

At internal bearing
\[
k_{c,90} = \text{MAX} \left(1 ; \text{MIN} \left(\left(2.38 \frac{l}{250} \right)^{\left(1 + \frac{h}{6l} \right)} ; 4 \right) \right) = 2.64
\]
\[
\sigma_{c,90,d} = k_{c,90} \times f_{c,90,d} = 2.64 \times 1.54 = 4.07 \text{ N/mm}^2
\]

Ultimate capacity of bearing at ULS
\[
F_{\text{MAX}} = \sigma_{c,90,d} \times b \times l = 4.07 \times 10.0 \times 10.0 = 40.7 \text{ kN}
\]
Shear capacity at a support

Data given
Width \(b = 100.0 \) mm
Depth \(h = 150.0 \) mm
Support \(l = 100.0 \) mm

Material properties:
- Timber \(T \) = Softwood
- Strength class \(C_T \) = C24
- Shear strength \(f_{v,k} \) = 2.50 N/mm²
- Service class \(C_S \) = medium-term
- Duration class \(C_D \) = medium-term
- Partial factor \(\gamma_M \) = 1.30

\[
f_{v,d} = k_{\text{mod}} \frac{f_{v,k}}{\gamma_M} = \frac{0.80 \times 2.50}{1.30} = 1.54 \text{ N/mm}^2
\]

Shear capacity
\[
V_{\text{max}} = \frac{f_{v,d} \times b \times h}{1.5} = \frac{0.154 \times 10.0 \times 15.0}{1.5} = 15.40 \text{ kN}
\]
Shear capacity at a support notched at the bottom

Data given
- Width \(b\) = 100.0 mm
- Depth \(h\) = 200.0 mm
- Depth \(h_{ef}\) = 120.0 mm
- Distance \(x\) = 75.0 mm
- Support \(l\) = 100.0 mm

Material properties:
- Timber \(T\) = SEL("EC5_BS/classes"; type;) = Softwood
- Strength class \(C_T\) = C24
- Shear strength \(f_{v,k}\) = 2.50 N/mm²
- Service class \(C_S\) = 2
- Duration class \(C_D\) = medium-term
- Partial factor \(\gamma_M\) = 1.30
- \(k_{mod}\) = 0.80
- \(f_{v,d} = k_{mod} \cdot \frac{f_{v,k}}{\gamma_M} = \frac{2.50}{1.30} = 1.54 \text{ N/mm}^2\)

Shear capacity

\[
\alpha = \frac{h_{ef}}{h} = \frac{120.0}{200.0} = 0.60
\]

\[
k_v = \text{MIN}\left(\frac{5}{\sqrt{h\left(\sqrt{\alpha^*(1-\alpha)} + 0.8*\frac{x}{h}\sqrt{\frac{1}{\alpha^2}}\right)}, 1)\right) = 0.425
\]

\[
V_{max} = \left(\frac{k_v \cdot f_{v,d} \cdot b \cdot h_{ef}}{1.5}\right) = \left(\frac{0.425 \cdot 0.154 \cdot 10.0 \cdot 12.0}{1.5}\right) = 5.24 \text{ kN}
\]
Shear capacity at a support notched at the top

Data given
- Width $b = 100.0$ mm
- Depth $h_{ef} = 120.0$ mm
- Support $l = 100.0$ mm

Material properties:
- Timber T = Softwood
- Strength class C_T = C24
- Shear strength $f_{v,k} = 2.50$ N/mm²
- Service class C_S = 2
- Duration class C_D = medium-term
- Partial factor $\gamma_M = 1.30$

$$k_{mod} = 0.80$$

$$f_{v,d} = k_{mod} \frac{f_{v,k}}{\gamma_M} = 0.80 \times \frac{2.50}{1.30} = 1.54 \text{ N/mm}^2$$

Shear capacity

$$V_{max} = \frac{f_{v,d} \times b \times h_{ef}}{1.5} = \frac{0.154 \times 10.0 \times 12.0}{1.5} = 12.32 \text{ kN}$$